
1 Baby Brooks
Notational note. I use G to denote the Greedy algorithm.

We wish to prove that if 𝐺 = (𝑉, 𝐸) is connected and non-regular, then 𝜒(𝐺) ≤ Δ.

Let 𝑥0 ∈ 𝑉 be s.t. 𝑑 (𝑥0) = 𝛿. Since 𝐺 is connected, running BFS from 𝑥0 adds all
vertices to the BFS tree. Let O−1 be the ordering of the vertices s.t. 𝑧 is the 𝑖th vertex
if it was the 𝑖th one to be added by BFS. Trivially, 𝑥0 is the first vertex in O−1. Let O
be the reverse order, with 𝑥0 last. We will prove G colors 𝐺 with at most Δ colors if it
uses the ordering O.

Observe that, in the BFS run, every 𝑥 ≠ 𝑥0 is inserted by a neighbor that was already
in the tree. In other words, in the O−1 order, every vertex has a neighbor that precedes
him in the order. Consequently, in O, every 𝑥 ≠ 𝑥0 has a neighbor that succeeds him in
the order.

It follows that the worst case scenario for the coloring of 𝑥 ≠ 𝑥0 is that it has 𝑑 (𝑥) − 1
preceding neighbors. ∴ G eliminates at most 𝑑 (𝑥) − 1 ≤ Δ − 1 colors. Then 𝑥 can be
colored with a color in {1, . . . ,Δ}.

When G reaches 𝑥0 it eliminates at most 𝑑 (𝑥0) = 𝛿 colors. Since 𝐺 is non-regular
𝛿 < Δ. ∴ There is at least one color for 𝑥0 in {1, 2, . . . ,Δ}.
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2 Max flow, min cut
Let 𝑓 a flow over a network N . We want to prove two things: (1) 𝑣( 𝑓 ) ≤ 𝐶𝑎𝑝(𝑆) for
any cut 𝑆 and (2) 𝑓 is maximal iff there is a cut 𝑆 s.t. 𝑣( 𝑓 ) = 𝐶𝑎𝑝(𝑆).

(1) We know 𝑣( 𝑓 ) = 𝑓 (𝑆, 𝑆)− 𝑓 (𝑆, 𝑆). Since 𝑓 (𝐴, 𝐵) is a sum over 𝑓 and 0 ≤ 𝑓 (−→𝑎𝑏) ≤
𝑐(−→𝑎𝑏) for any

−→
𝑎𝑏 ∈ 𝐸 ,

𝑣( 𝑓 ) = 𝑓 (𝑆, 𝑆) − 𝑓 (𝑆, 𝑆) ≤ 𝑓 (𝑆, 𝑆)

The same logic implies 𝑓 (𝑆, 𝑆) ≤ 𝑐(𝑆, 𝑆) = 𝐶𝑎𝑝(𝑆). Then 𝑣( 𝑓 ) ≤ 𝑓 (𝑆, 𝑆) ≤ 𝐶𝑎𝑝(𝑆).
■

(2: ⇐) Assume there is a cut 𝑆 s.t. 𝑣( 𝑓 ) = 𝐶𝑎𝑝(𝑆). Let 𝑔 an arbitrary flow. Then
𝑣(𝑔) ≤ 𝐶𝑎𝑝(𝑆) = 𝑣( 𝑓 ). Then 𝑓 is maximal. Furthermore, it is trivial by definition of
𝐶𝑎𝑝 that 𝐶𝑎𝑝(𝑇) ≥ 𝑣( 𝑓 ) for any cut 𝑇 . Then 𝐶𝑎𝑝(𝑇) ≥ 𝐶𝑎𝑝(𝑆) ⇒ 𝑆 is minimal.

(2 : ⇒) Assume 𝑓 is maximal. Let

𝑆 = {𝑠} ∪ {𝑥 ∈ 𝑉 : ∃ 𝑓 -camino aumentante entre 𝑠 y 𝑥}

𝑆 is a cut because, if 𝑡 ∈ 𝑆, there is an augmenting path 𝑠 . . . 𝑡 and the flow can be
augmented, which contradicts that 𝑓 is maximal.

Recall that 𝑣( 𝑓 ) = 𝑓 (𝑆, 𝑆) − 𝑓 (𝑆, 𝑆). The first term in the difference is

𝑓 (𝑆, 𝑆) =
∑︁

𝑥∈𝑆,𝑧∉𝑆,−→𝑥𝑧∈𝐸

𝑓 (−→𝑥𝑧)

Let−→𝑥𝑧 ∈ 𝐸 a side in the range of the sum above. Then there is an augmenting path 𝑠 . . . 𝑥

and there is no augmenting path 𝑠 . . . 𝑧. But −→𝑥𝑧 ∈ 𝐸 and 𝑠 . . . 𝑥 . . . 𝑧 is a path. Since it
cannot be an augmenting path, we must have 𝑓 (−→𝑥𝑧) = 𝑐(−→𝑥𝑧). Then 𝑓 (−→𝑥𝑧) = 𝑐(−→𝑥𝑧) for
all 𝑥 ∈ 𝑆, 𝑧 ∉ 𝑆,−→𝑥𝑧 ∈ 𝐸 . Therefore

𝑓 (𝑆, 𝑆) =
∑︁
...

𝑓 (−→𝑥𝑧) =
∑︁
...

𝑐(−→𝑥𝑧) = 𝐶𝑎𝑝(𝑆)

Now consider the second term in the difference:

𝑓 (𝑆, 𝑆) =
∑︁

𝑤∉𝑆,𝑥∈𝑆,−→𝑤𝑥∈𝐸

𝑓 (−→𝑤𝑥)

Let −→𝑤𝑥 an arbitrary side in the sum above. Again, there must be an augmenting path
𝑠 . . . 𝑥, but not one 𝑠 . . . 𝑤. But −→𝑤𝑥 is a side, and then 𝑠 . . .←−𝑥𝑤 is not augmenting only
if 𝑓 (←−𝑥𝑤) = 0. This means 𝑓 (−→𝑤𝑥) = 0 for all −→𝑤𝑥 in the range of the sum above.

∴ 𝑣( 𝑓 ) = 𝐶𝑎𝑝(𝑆) − 0 = 𝐶𝑎𝑝(𝑆). ■
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3 Networks
3.1 Edmond-Karp: Complexity
The complexity of E.K. is determined by the complexity of finding the 𝑓𝑖-augmenting
paths, the number of such paths, and the complexity of updating the flow with such
paths.

To find 𝑓𝑖-augmenting paths, EK uses BFS with a complexity 𝑂 (𝑚). Updating the flow
has complexity 𝑂 (𝑛). So the question is what is the number 𝜑 of 𝑓𝑖 augmenting paths
(or runs of BFS) that are used.

The number of such paths is bounded by the number of sides times the number of times
a side may become critical. We shall determine how many times a side may become
critical.

Let 𝑓1, 𝑓2, . . . be the iterations of EK. Let −→𝑥𝑧 be a side that became critical at iteration
𝑘 . There are two options: it either saturated being forward or emptied being backward.

Saturated being forward. If −→𝑥𝑧 saturated being forward, then 𝑝𝑘 = 𝑠 . . .−→𝑥𝑧 . . . 𝑡 is the
form of the augmenting path used to determine 𝑓𝑘 .

Assume −→𝑥𝑧 becomes critical again at some iteration 𝑗 , so that 𝑝 𝑗 = 𝑠 . . .−→𝑥𝑧 . . . 𝑡 is an
augmenting path. For this to occur there must exist some iteration 𝑖, with 𝑘 < 𝑖 < 𝑗 ,
such that 𝑝𝑖 = 𝑠 . . .←−𝑥𝑧 . . . 𝑡 is an augmenting path. In other words, 𝑧 must have returned
some of the flow to 𝑥. Since we are using EK, the augmenting paths are of minimal
length, and the distance between two vertices never decreases. This means

𝑑 𝑗 (𝑡) ≥ 𝑑𝑖 (𝑥) + 𝑏𝑖 (𝑥)
= 𝑑𝑖 (𝑧) + 1 + 𝑏𝑖 (𝑥)
≥ 𝑑𝑘 (𝑧) + 1 + 𝑑𝑘 (𝑥)
= 𝑑𝑘 (𝑥) + 1 + 1 + 𝑏𝑘 (𝑥)
= 𝑑𝑘 (𝑡) + 2

Emptied being backward. Now, assume−→𝑥𝑧 is a side that saturated being backward on the
𝑘th iteration; this is, that 𝑝𝑘 = 𝑠 . . .←−𝑥𝑧 . . . 𝑡 was the path found. Assume it empties again
at some iteration 𝑗 , so that 𝑝 𝑗 = 𝑠 . . .←−𝑥𝑧 . . . 𝑡 is the 𝑓 𝑗 path. Then there is some 𝑖, with
𝑘 < 𝑖 < 𝑗 , such that 𝑝𝑖 = 𝑠 . . .−→𝑥𝑧 . . . 𝑡 is a path; i.e. the side was used forward. Now,
all these paths are of minimal length, because we are using E.K. And in all succesive
paths, the distance from 𝑠 to 𝑡 never decreases. Then,

𝑑 𝑗 (𝑡) ≥ 𝑑𝑖 (𝑡)
= 𝑑𝑖 (𝑧) + 𝑏𝑖 (𝑧)
= 𝑑𝑖 (𝑥) + 1 + 𝑏𝑖 (𝑧)
≥ 𝑑𝑘 (𝑥) + 1 + 𝑏𝑘 (𝑧)
= 𝑑𝑘 (𝑧) + 1 + 1 + 𝑏𝑘 (𝑧)
= 𝑑𝑘 (𝑡) + 2
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In both cases, the distance from 𝑠 to 𝑡 had to increase by at least two unites. But the
distance from 𝑠 to 𝑡 is bounded by 𝑛; this is, it is 𝑂 (𝑛). Then a side may become critical
𝑂 ( 𝑛2 ) = 𝑂 (𝑛) times. Since there are 𝑚 sides, the number of times an arbitrary side will
become critical is 𝑂 (𝑚𝑛).

∴ The complexity is 𝑂 (𝑚𝑛) [𝑂 (𝑛) +𝑂 (𝑚)] = 𝑂 (𝑚𝑛)𝑂 (𝑚) = 𝑂 (𝑚2𝑛).
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3.2 Edmond-Karp: Augmenting paths are non-decreasing
Let 𝐴 = {𝑥 ∈ 𝑉 : 𝑑𝑘+1 (𝑥) < 𝑑𝑘 (𝑥)} and assume 𝐴 ≠ ∅. Let 𝑥0 ∈ 𝐴 be the vertex whose
distance 𝑑𝑘+1 (𝑥0) from 𝑠 is minimal; i.e. 𝑑𝑘+1 (𝑥0) ≤ 𝑑𝑘+1 (𝑦) ∀𝑦 ∈ 𝐴. Since 𝑥0 ∈ 𝐴,
𝑑𝑘+1 (𝑥0) < 𝑑𝑘 (𝑥0) ≤ ∞. Then there exists a P𝑘+1 = 𝑠 . . . 𝑥0 of minimal length. Let 𝑧
be the predecessor of 𝑥0 in this path.

By definition of 𝑑 𝑓 , the length of the path is 𝑑𝑘+1 (𝑥0). Because the path is of minimal
length to 𝑥0, it is of minimal length to any predecessor of 𝑥0 in it, including 𝑧. Then
𝑑𝑘+1 (𝑧) = 𝑑𝑘+1 (𝑥0) − 1. This implies 𝑧 ∉ 𝐴.

There are two possible cases: either −→𝑥𝑧 ∈ 𝐸 or −→𝑧𝑥 ∈ 𝐸 .

(Case 1): If −−→𝑧𝑥0 ∈ 𝐸 , then 𝑑𝑘+1 (𝑧) < 𝑑𝑘+1 (𝑥0). Since 𝑧 ∉ 𝐴,

𝑑𝑘 (𝑧) ≤ 𝑑𝑘+1 (𝑧) < 𝑑𝑘+1 (𝑥0) < ∞

Since 𝑑𝑘 (𝑧) < ∞, there is an 𝑓𝑘-augmenting path from 𝑠 to 𝑧. Then, in principle,
𝑠 . . . 𝑧𝑥 could be an augmenting path. But if this were the case,

𝑑𝑘 (𝑥0) ≤ 𝑑𝑘 (𝑧) + 1 ≤ 𝑑𝑘+1 (𝑧) + 1 = 𝑑𝑘+1 (𝑥)

which implies 𝑥0 ∉ 𝐴 (⊥). 𝑠 . . . 𝑧𝑥 is not 𝑓𝑘-a.p. This can only happen if 𝑓𝑘 (−−→𝑧𝑥0) =
𝑐(−−→𝑧𝑥0) (the side is saturated). Since the side is used in a 𝑓𝑘+1-a.p. it must be the case
that 𝑓𝑘+1 (−−→𝑧𝑥0) < 𝑐(−−→𝑧𝑥0). This means −→𝑧𝑥 was used backwards in the 𝑘th iteration, or
rather that 𝑓𝑘 = 𝑠 . . .←−−𝑥0𝑧 . . . 𝑡.

Since this is Edmond-Karp, augmenting paths are of minimal length. Then

𝑑𝑘 (𝑧) = 𝑑𝑘 (𝑥0) + 1
> 𝑑𝑘+1 (𝑥0) + 1
= 𝑑𝑘+1 (𝑧) + 2
≥ 𝑑𝑘 (𝑧) + 2

which is absurd.

1.3.2 If −→𝑥𝑧 is a side then again

𝑑𝑘 (𝑧) ≤ 𝑑𝑘+1 (𝑧) < 𝑑𝑘+1 (𝑥0) < ∞

Then there is an 𝑓𝑘-a.p. 𝑠 . . . 𝑧 and, at least in principle, 𝑠 . . .−→𝑧𝑥 could also be augment-
ing. But if this were the case, we would have

𝑑𝑘 (𝑥0) = 𝑑𝑘 (𝑧) + 1 ≤ 𝑑𝑘+1 (𝑧) + 1 = 𝑑𝑘+1 (𝑥0)

which would imply 𝑥0 ∉ 𝐴 (⊥). Then 𝑠 . . .−−→𝑧𝑥0 is not augmenting, which means the side
−−→𝑥0𝑧 cannot be used backwards. This can only be true if 𝑓𝑘 (−−→𝑥0𝑧 = 0. But since the side is
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used backwards in the 𝑓𝑘+1-augmenting path, it must be used forward in this iteration.
Which means 𝑠 . . .−−→𝑥0𝑧 . . . 𝑡 is augmenting. But then

𝑑𝑘 (𝑧) = 𝑑𝑘 (𝑥0) + 1
> 𝑑𝑘+1 (𝑥0) + 1
= 𝑑𝑘+1 (𝑧) + 2
≥ 𝑑𝑘 (𝑧) + 2

which is absurd.

Conclusion. In both cases a contradiction arises. The contradiction comes from
assuming 𝐴 ≠ ∅. Then 𝐴 = ∅. ■
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4 Dinitz: Complexity
We will prove the complexity of Dinitz is 𝑂 (𝑛2𝑚).

Recall that Dinitz builds succesive auxiliary networks with BFS, uses DFS to find
blocking paths in them, and uses these paths to update the flow. Since the level of 𝑡
augments in each succesive network, there are at most 𝑂 (𝑛) auxiliary networks. So the
complexity of Dinitz is

𝑂 (𝑛) [Comp. of building A.N. + Comp. of finding blocking flow in A.N.]

The complexity of building the A.N. is the complexity of BFS, which is 𝑂 (𝑚). The
process of finding the blocking path varies is the Western and the original algorithms.

Original version. The original Dinitz algorithm enforced the following invariant: In
any given auxiliary network, all vertices have edges connecting to the next level. This
invariant implies that the DFS run always reaches 𝑡 without need to backtrack. In
consequence, the complexity of the DFS run is 𝑂 (𝑛). The complexity of updating the
flow is 𝑂 (𝑛), and each time this happens at least one side is saturated and removed.
Then there are 𝑂 (𝑚) paths. ∴ The complexity of finding the paths and updating the
flow is 𝑂 (𝑛 × 𝑚).

However, there is some extra cost associated to preserving this invariant. Each time a
path is found, saturated sides are removed with a prunning operation. The prunning
operation goes from the highest to the lowest levels in the network, checks for vertices
whose exiting edge is saturated, and deletes them. This means that, for each vertex,
a process of 𝑂 (1) complexity checks if it is saturated. This happens each time a path
is found, so 𝑂 (𝑛 × 𝑚) times. Once these sides have been detected, they and their
neighbors are removed, which has complexity 𝑂 (𝑑 (𝑥)). Since this happens at worst
for all vertices, the deleting operation is 𝑂 (∑𝑥∈𝑉 𝑑 (𝑥)) = 𝑂 (𝑚). The total cost of
enforcing the invariant is then𝑂 (𝑛×𝑚) +𝑂 (𝑚), which means the complexity of finding
the blocking paths and updating the flow is 𝑂 (𝑛 ×𝑚) +𝑂 (𝑛 ×𝑚) +𝑂 (𝑚) = 𝑂 (𝑛 ×𝑚).
Then the complexity of Dinitz is 𝑂 (𝑛2𝑚).

Western version. The Western version finds blocking paths and updates the flow inside
a while loop with three clauses. The first clause is running BFS to advance; i.e. setting
𝑥 = 𝑠 and iteratively making 𝑥 be the first neighbor of 𝑥 until 𝑡 is reached. This clause
executes as long as there is a neighbor and we call it 𝐴.

The second clause considers the case where 𝑥, the vertex we are traversing, has no
neighbors in the next level. Then the algorithm backtracks to its predecessor, removes
the side leading from it to 𝑥, and attempts 𝐴 once more. We call this part 𝑅.

The last clause considers the case where 𝑡 is reached. Here, the flow is augmented using
the path found and all saturated sides are removed.

Thus, finding the blocking flow and updating the path can be modeled as a word
𝐴 . . . 𝐼 𝐴 . . . 𝑅𝐴 . . . 𝑅𝐴 . . . 𝐼; i.e. as a succession of words of the form 𝐴 . . . 𝑋 with
𝑋 ∈ {𝑅, 𝐼}.

The process 𝑅 has complexity 𝑂 (1) because it simply involves going backwards and
deleting a side. The process 𝐴 has complexity 𝑂 (1) because it simply involves moving
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forward, but at most𝑂 (𝑛) successions of 𝐴 may occur. This means𝑂 (𝐴 . . . 𝐴) = 𝑂 (𝑛).
The process 𝐼 has complexity 𝑂 (𝑛) because the flow is updated across at most all
vertices. Then 𝑂 (𝐴 . . . 𝐼) = 𝑂 (𝑛) + 𝑂 (𝑛) = 𝑂 (𝑛) and 𝑂 (𝐴 . . . 𝑅) = 𝑂 (𝑛) + 𝑂 (1) =
𝑂 (𝑛). The question is how many words of the form 𝐴 . . . 𝑋 exist. At worst, all paths
are traversed in the process of finding 𝑡, so there are 𝑂 (𝑚) words of this form. Then
the complexity of the run is

𝑂 (𝑚) [𝑂 (𝑛) +𝑂 (𝑛)] = 𝑂 (𝑛𝑚)

Then the complexity of Dinitz is 𝑂 (𝑛2𝑚).
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4.1 Wave: Complexity
We know the distance between 𝑠 and 𝑡 in auxiliary networks is increasing. The distance
is bounded by 𝑛. ∴ There are 𝑂 (𝑛) auxiliary networks. Now, each auxiliary network is
first constructed and then used to find a blocking flow. Then the complexity of Wave is

𝑂 (𝑛) [𝐹 + 𝐵]

where 𝐹 is the complexity of finding a blocking flow in an auxiliary network and 𝐵 the
complexity of building an auxiliary network. To build the auxiliary network we use
BFS. ∴ 𝐵 = 𝑂 (𝑚). Let us examine 𝐹.

To find blocking flows we attempt to balance in forward and backward waves. When
going forward, let 𝑉 be the steps where a side is saturated, 𝑉 those where a side is not
saturated. When going backward, let 𝑆 be the steps where a side is emptied, 𝑆 those
there a side is not emptied.

Complexity of 𝑉 . Assume −→𝑥𝑧 is a side and is saturated in a forward wave. To saturate
again it must empty at least a little bit before. If it empties, then 𝑧 was blocked and
returned the flow to 𝑥; and since 𝑧 is blocked, −→𝑥𝑧 will never again be used. Then each
side can saturate at most once. ∴ the complexity of 𝑉 is 𝑂 (𝑚).

Complexity of 𝑆. Assume −→𝑧𝑥 is a side and it empties in a backward wave. Since 𝑥

returned flow, it is blocked and 𝑧 will not send flow to 𝑥 a gain. Then −→𝑧𝑥 cannot be
emptied ever again. ∴ The complexity of 𝑆 is 𝑂 (𝑚).

Complexity of 𝑉 . When a vertex sends flow to its neighbors, it saturates all sides except
perhaps one. Then, for any given vertex, each forward wave will send partial flow
through at most one side. ∴ The complexity of 𝑉 is 𝑂 (𝑛) × 𝜑, with 𝜑 the number of
forward waves.

Complexity of 𝑆. When a vertex returns flow to its predecessors, it empties all sides
except perhaps one. Then, for any given vertex in a backward wave, at most one side
is partially emptied. ∴ The complexity of 𝑆 is 𝑂 (𝑛) = 𝜓 where 𝜓 is the number of
backward waves.

Now, it is trivialy to see 𝜑 = 𝜓 and there are at most 𝑛 forward waves. ∴ 𝑂 (𝜑) = 𝑛 .

∴ The complexity of 𝑆,𝑉 are both 𝑂 (𝑛) ×𝑂 (𝑛) = 𝑂 (𝑛2).

∴ 𝐹 = 𝑂 (𝑛2) +𝑂 (𝑛2) +𝑂 (𝑚) +𝑂 (𝑚) = 𝑂 (𝑛2) +𝑂 (𝑚).

But 𝑂 (𝑛2) +𝑂 (𝑚) = 𝑂 (𝑛2), because 𝑚 ≤
(𝑛
2
)
= 𝑂 (𝑛2).

∴ 𝐹 = 𝑂 (𝑛2).

∴ The complexity of Dinitz is 𝑂 (𝑛)
[
𝑂 (𝑚) +𝑂 (𝑛2)

]
= 𝑂 (𝑛)𝑂 (𝑛2) = 𝑂 (𝑛3)
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5 Codes
5.1 Hamming bound
Let 𝐶 ⊆ {0, 1}𝑛. We want to prove

|𝐶 | = 2𝑛∑𝑡
𝑖=0

(𝑛
𝑖

)
Let 𝐴 =

⋃
𝑣∈𝐶 𝐷𝑡 (𝑣). Recall that 𝐷𝑡 (𝑣) is the set of words in {0, 1}𝑛 that are at a

Hamming distance of 𝑡 or less from 𝑣.

Let 𝑆𝑣 (𝑟) = {𝑤 ∈ {0, 1}𝑛 : 𝑑𝐻 (𝑣, 𝑤) = 𝑟}. Then it follows by definition that 𝐷𝑡 (𝑣) =⋃𝑡
𝑟=0 𝑆𝑣 (𝑟). Of course, this union is disjoint. It follows that

𝐴 =
⋃
𝑣∈𝐶

𝑡⋃
𝑟=0

𝑆𝑣 (𝑟)

and

|𝐴| = |𝐶 | ×
𝑡∑︁

𝑟=0
|𝑆𝑣 (𝑟) |

So now we must only determine |𝑆𝑣 (𝑟) |. But this is easy to do if we consider that any
𝑤 ∈ 𝑆𝑣 (𝑟) differs from 𝑣 by exactly 𝑟 bits, and is fully determined by this difference.
In other words, there is a bĳection between any 𝑤 ∈ 𝑆𝑣 (𝑟) and the set of the 𝑟 bits out
of all 𝑛 possible bits that make up the difference between 𝑤 and 𝑣. This readily entails
that |𝑆𝑣 (𝑟) | =

(𝑛
𝑟

)
. This readily gives

|𝐴| = |𝐶 | ×
𝑡∑︁

𝑟=0

(
𝑛

𝑟

)
⇒ |𝐶 | = |𝐴|∑𝑡

𝑟=0
(𝑛
𝑟

)
|

We do not know the cardinality of 𝐴, but since 𝐴 ⊆ {0, 1}𝑛 we know |𝐴| ≤ 2𝑛. Then

|𝐶 | ≤ 2𝑛∑𝑡
𝑟=0

(𝑛
𝑟

)
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5.2 𝛿(𝐶) = min { 𝑗 : ∃𝑆 ⊆ 𝐻∗𝑛 : |𝑆 | = 𝑗 ∧ 𝑆 is LD}
Notation. I use 𝐻∗𝑛 to denote the set with the 𝑛 columns of 𝐻. I use 𝐻 (𝑖)

to denote the 𝑖th column of 𝐻.

Let 𝑠 = min { 𝑗 : ∃𝑆 ⊆ 𝐻∗𝑛 : |𝑆 | = 𝑗 ∧ 𝑆 is LD}. This implies there are 𝑠 columns
𝐻 ( 𝑗1 ) , . . . , 𝐻 ( 𝑗𝑠 ) s.t.

∑
𝑥𝑖𝐻

( 𝑗𝑖 ) = 0 for 𝑥1, . . . , 𝑥𝑠 not all null.

(1) Let 𝑤 :=
∑
𝑥𝑖𝑒 𝑗𝑖 where 𝑒𝑘 is the vector with all zeroes except at the 𝑘th coordinate.

Since not all 𝑥𝑖 are zeroes, 𝑤 ≠ 0. Now,

𝐻𝑤𝑡 = 𝐻
(
𝑥1𝑒 𝑗1 + . . . + 𝑥𝑠𝑒 𝑗𝑠

) 𝑡
= 𝑥1𝐻𝑒𝑡𝑗1 + . . . + 𝑥𝑠𝐻𝑒𝑡𝑗𝑠

=
∑︁

𝑥𝑖𝐻
( 𝑗𝑖 )

{
Because 𝐻𝑒𝑡𝑗 = 𝐻 ( 𝑗 )

}
= 0

Then 𝑤 ∈ 𝑁𝑢(𝐻) = 𝐶. But |𝑤 | ≤ 𝑠 and 𝑤 ≠ 0. We know 𝛿 = min {|𝑥 | : 𝑥 ∈ 𝐶, 𝑐 ≠ 0}.

∴ 𝛿 ≤ |𝑤 | ≤ 𝑠.

(2) Let 𝑣 ∈ 𝐶 s.t. 𝛿 = |𝑣 |. Then there are 𝑖1, . . . , 𝑖𝛿 s.t. 𝑣 = 𝑒𝑖1 + . . . + 𝑒𝑖𝛿 . Since
𝑣 ∈ 𝐶, 𝐻𝑣𝑡 = 0, which using the same logic as before gives

∑
𝐻 (𝑖 𝑗 ) = 𝐻𝑣𝑡 = 0.

This implies
{
𝐻 (𝑖1 ) , . . . , 𝐻 (𝑖𝛿 )

}
is LD.

∴ 𝑠 ≤ 𝛿.

(3) Points (1) and (3) imply 𝑠 = 𝛿.
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5.3 Three statements around a generating polynomial
Let 𝐶 a code of length 𝑛 and dimension 𝑘 with generating polynomial 𝑔(𝑥). We will
prove:

1. 𝐶 = {𝑝(𝑥) : 𝑔𝑟 (𝑝) < 𝑛 ∧ 𝑔(𝑥) | 𝑝(𝑥)} := 𝐶1

2. 𝐶 = {𝑣(𝑥) ⊙ 𝑔(𝑥) : 𝑣(𝑥) ∈ 𝐹 [𝑥]} := 𝐶2

3. 𝑔𝑟 (𝑔) = 𝑛 − 𝑘

4. 𝑔(𝑥) | (1 + 𝑥𝑛)

(1 and 2) : We shall prove 𝐶1 ⊆ 𝐶2 ⊆ 𝐶 ⊆ 𝐶1.

Let 𝑝(𝑥) ∈ 𝐶1.Then there is some 𝑞(𝑥) s.t. 𝑝(𝑥) = 𝑔(𝑥)𝑞(𝑥) and 𝑔𝑟 (𝑔(𝑥)𝑞(𝑥)) < 𝑛.

∴ 𝑔(𝑥)𝑞(𝑥) = 𝑔(𝑥) ⊙ 𝑞(𝑥) ∈ 𝐶2.

∴ 𝐶1 ⊆ 𝐶2.

Now let 𝑝(𝑥) = 𝑣(𝑥) ⊙ 𝑔(𝑥) ∈ 𝐶2 with 𝑣(𝑥) an arbitrary polynomial. Then

𝑝(𝑥) =
(
𝑣0 + 𝑣1𝑥 + . . . + 𝑣𝑔𝑟 (𝑣)𝑥𝑔𝑟 (𝑣)

)
⊙ 𝑔(𝑥)

= 𝑣0 ⊙ 𝑔(𝑥) + 𝑣1 (𝑥 ⊙ 𝑔(𝑥)) + 𝑣2 (𝑥2 ⊙ 𝑔(𝑥)) + . . . + 𝑣𝑔𝑟 (𝑣)
(
𝑥𝑔𝑟 (𝑣) ⊙ 𝑔(𝑥)

)
= 𝑣0𝑔(𝑥) + 𝑣1𝑅𝑜𝑡 (𝑔(𝑥)) + 𝑣2𝑅𝑜𝑡

2 (𝑔(𝑥)) + . . . + 𝑣𝑔𝑟 (𝑣)𝑅𝑜𝑡𝑔𝑟 (𝑣) (𝑔(𝑥))

All rotations of 𝑔(𝑥) belong to 𝐶.

∴ 𝑝(𝑥) ∈ 𝐶.

∴ 𝐶2 ⊆ 𝐶.

Now let 𝑝(𝑥) ∈ 𝐶. By definition, 𝑔𝑟 (𝑝) < 𝑛, which implies 𝑝(𝑥) = 𝑝(𝑥) mod (1+𝑥𝑛).
We know

𝑝(𝑥) = 𝑔(𝑥)𝑞(𝑥) + 𝑟 (𝑥)

for some 𝑞(𝑥), 𝑟 (𝑥) s.t. 𝑔𝑟 (𝑟) < 𝑔𝑟 (𝑔). Then

𝑝(𝑥) = (𝑔(𝑥)𝑞(𝑥) + 𝑟 (𝑥)) mod (1 + 𝑥𝑛)
= 𝑔(𝑥) ⊙ 𝑞(𝑥) + (𝑟 (𝑥) mod (1 + 𝑥𝑛))
= 𝑔(𝑥) ⊙ 𝑞(𝑥) + 𝑟 (𝑥) {Since 𝑔𝑟 (𝑟) < 𝑔𝑟 (𝑔) < 𝑛}

∴ 𝑟 (𝑥) = 𝑝(𝑥) + 𝑔(𝑥) ⊙ 𝑞(𝑥).

We know 𝑝 ∈ 𝐶 and 𝑔(𝑥) ⊙ 𝑞(𝑥) ∈ 𝐶2 ⊆ 𝐶.

∴ 𝑟 (𝑥) ∈ 𝐶.

But since 𝑔 is generating polynomial, it is the unique polynomial with the least non-null
degree in 𝐶.
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∴ 𝑔𝑟 (𝑟) < 𝑔𝑟 (𝑔) ⇒ 𝑟 (𝑥) = 0.

∴ 𝑔(𝑥) | 𝑝(𝑥) and then 𝑝(𝑥) ∈ 𝐶1.

∴ 𝐶 ⊆ 𝐶1

(3) Let 𝑝(𝑥) ∈ 𝐶. Then there is 𝑞(𝑥) s.t. 𝑝(𝑥) = 𝑔(𝑥)𝑞(𝑥) with 𝑛 > 𝑔𝑟 (𝑝) =

𝑔𝑟 (𝑔) + 𝑔𝑟 (𝑞). This readily implies 𝑔𝑟 (𝑞) < 𝑛 − 𝑔𝑟 (𝑔) < 𝑛. Then 𝑔(𝑥)𝑞(𝑥) ∈ 𝐶.

This entails there is a bĳection between𝐶 and the set of polynomials of degree 𝑛−𝑔𝑟 (𝑔).
Then

|𝐶 | = | {𝑝(𝑥) : 𝑔𝑟 (𝑝) < 𝑛 − 𝑔𝑟 (𝑔)} |
⇐⇒ 2𝑘 = 2𝑛−𝑔𝑟 (𝑔)

⇐⇒ 𝑘 = 𝑛 − 𝑔𝑟 (𝑔)
⇐⇒ 𝑔𝑟 (𝑔) = 𝑛 − 𝑘 ■

(4) Divide (1 + 𝑥𝑛) by 𝑔(𝑥) to obtain

1 + 𝑥𝑛 = 𝑔(𝑥)𝑞(𝑥) + 𝑟 (𝑥)

with 𝑔𝑟 (𝑟) < 𝑔𝑟 (𝑔). Taking the modulus,

0 = (1 + 𝑥𝑛) mod (1 + 𝑥𝑛)
= (𝑔(𝑥)𝑞(𝑥) + 𝑟 (𝑥)) mod (1 + 𝑥𝑛)
= (𝑔(𝑥) ⊙ 𝑞(𝑥)) + (𝑟 (𝑥) mod 1 + 𝑥𝑛)
𝑔(𝑥) ⊙ 𝑞(𝑥) = 𝑟 (𝑥)

because 𝑔𝑟 (𝑟) < 𝑔𝑟 (𝑔) < 𝑛.

∴ 𝑟 (𝑥) = 𝑔(𝑥) ⊙ 𝑞(𝑥) ∈ 𝐶.

But 𝑔𝑟 (𝑟) < 𝑔𝑟 (𝑔). ∴ 𝑟 (𝑥) = 0 and 𝑔(𝑥) | (1 + 𝑥𝑛).
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6 Matchings
6.1 Konig
We want to prove that any bipartite and regular graph𝐺 = (𝑉, 𝐸) has a perfect matching.
Let 𝑋,𝑌 be the two parts of 𝐺. For any 𝑊 ⊆ 𝑉 let 𝐸𝑊 := {𝑤𝑢 ∈ 𝐸 : 𝑤 ∈ 𝑊}.

(1) Let 𝑆 ⊆ 𝑋 and 𝑙 ∈ 𝐸𝑆 . It follows that

∃𝑥 ∈ 𝑆, 𝑦 ∈ 𝑌 : 𝑙 = 𝑥𝑦 = 𝑦𝑥

∴ 𝑦 ∈ Γ(𝑥). And since 𝑥 ∈ 𝑆 we have 𝑦 ∈ Γ(𝑆) and 𝑙 ∈ 𝐸Γ (𝑆) .

∴ 𝐸𝑆 ⊆ 𝐸Γ (𝑆) and |𝐸𝑆 | ≤ |𝐸Γ (𝑆) |.

(2) Let us calculate |𝐸𝑊 | when 𝑊 ⊆ 𝑋 .

Observe that 𝐸𝑊 =
⋃

𝑤∈𝑊 {𝑤𝑣 : 𝑣 ∈ Γ(𝑤)}. Furthermore, the union is disjoint, be-
cause 𝑤𝑣 ∈ 𝐸𝑊 ⇒ 𝑤 ∈ 𝑋 ⇒ 𝑣 ∈ 𝑌 . Then

|𝐸𝑊 | =
∑︁
𝑤∈𝑊
|Γ(𝑤) | =

∑︁
𝑤∈𝑊

𝑑 (𝑤)

Since 𝐺 is regular, 𝑑 (𝑤) = 𝛿 = Δ.

∴ |𝐸𝑊 | = Δ|𝑊 |

(3) Using what we established in (1), it follows from (2) that

|𝑆 |Δ ≤ |Γ(𝑆) |Δ⇒ |𝑆 | ≤ |Γ(𝑆) |

This holds for any 𝑆 ⊆ 𝑋 . Then Hall’s theorem implies there is a complete matching
from 𝑋 to 𝑌 . To prove it is perfect, we must prove |𝑋 | = |𝑌 |.

But since 𝑋,𝑌 are the two parts of 𝐺, 𝐸 = 𝐸𝑋 = 𝐸𝑌 . Then |𝐸𝑋 | = |𝐸𝑌 |, which implies
|𝑋 |Δ = |𝑌 |𝛿⇒ |𝑋 | = |𝑌 |.

Alternatively, since there is a complete matching from 𝑋 to𝑌 , |𝑋 | ≤ |𝑌 |. But the choice
of 𝑋 over 𝑌 was arbitrary, and then the same holds for 𝑌 . Then |𝑋 | = |𝑌 |.

In both caes the matching is perfect.
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6.2 Hall
Let 𝐺 = (𝑉, 𝐸) a bipartite graph with parts 𝑋 and 𝑌 , and let 𝑍 ∈ {𝑋,𝑌 }. We want to
prove that there is a complete matching from 𝑋 to 𝑌 iff ∀𝑆 ⊆ 𝑍 : |𝑆 | ≤ |Γ(𝑆) |.

(⇒) The proof is trivial, because if such matching exists, it induces an injective function
𝑓 : 𝑋 → 𝑌 s.t. 𝑓 (𝑥) ∈ Γ(𝑥). Since it is an injection, | 𝑓 (𝑆) | = |𝑆 | for any 𝑆. Then
𝑓 (𝑆) ⊆ Γ(𝑆) ⇒ |𝑆 | ≤ |Γ(𝑆) |.

(⇐) Assume the Hall condition |𝑆 | ≤ |Γ(𝑆) | holds. Assume that, after running the
algorithm to find a maximal matching, an incomplete matching is found. We will build
𝑆 ⊆ 𝑋 that violates our assumption (we could use 𝑆 ⊆ 𝑌 without loss of generality).

(1) Let 𝑆0 be the set of rows unmatched and 𝑇1 = Γ(𝑆0). Observe that, by assumption,
𝑆0 ≠ ∅, and all columns in 𝑇1 have a match that is not in 𝑆0. Let 𝑆1 the set of rows
matching columns of 𝑇1 and 𝑇2 = Γ(𝑆1) − 𝑇1. Generally,

𝑆𝑖 = Rows matching with 𝑇𝑖

𝑇𝑖+1 = Γ(𝑆𝑖) −
𝑗=𝑖⋃
𝑗=0

𝑇𝑗

The algorithm stops only when it is revising a row and this row has no available
neighbors; this is, it only stops passing from a 𝑆𝑖 to a 𝑇𝑖+1 when 𝑇𝑖+1 = ∅. Furthermore,
since each column only labels a single row (that of its match), and 𝑇𝑖 "creates" 𝑆𝑖 , we
have |𝑆 𝑗 | = |𝑇𝑗 |.

Define 𝑆 =
⋃

𝑆𝑖 , 𝑇 =
⋃
𝑇𝑖 , and note that all the 𝑆𝑖 are disjoint and all the 𝑇𝑖 are disjoint.

Then

|𝑆 | =
∑︁
|𝑆𝑖 |

= |𝑆0 | +
∑︁
|𝑇𝑖 |

= |𝑆0 | + |𝑇 |

∴ |𝑆 | > |𝑇 | (since 𝑆0 ≠ ∅).

We must only prove now that 𝑇 = Γ(𝑆).

(1) 𝑇 are the labeled columns, and each column is labeled by a row in 𝑆. Each row only
labels its neighbors. This implies 𝑇 ⊂ Γ(𝑆).

(2) Assume 𝑦 ∈ Γ(𝑆) and 𝑦 ∉ 𝑇 . Then 𝑦 was not labeled. But since 𝑦 ∈ Γ(𝑆) there is
an 𝑥 ∈ 𝑆 s.t. 𝑦 ∈ Γ(𝑥). Then each time the algorithm passes through 𝑥 it should label
𝑦, which contradicts the fact that 𝑦 is not labeled. Then 𝑦 ∈ 𝑇 . Then Γ(𝑆) ⊆ 𝑇 .

∴ Γ(𝑆) = 𝑇 and |𝑆 | > |Γ(𝑆) |. But this contradicts the hypothesis that the Hall condition
holds. The contradiction comes from assuming there wasn’t a complete matching. ∴
There is a complete matching. ■
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7 P-NP
7.1 2-Color is polynomial
To prove 2-color is polynomial, we must provide an algorithmA that correctly decides
whether any given 𝐺 = (𝑉, 𝐸) is 2-colorable in polynomial time. We will first provide
A and then show its correctness and its belonging to 𝑃.

The algorithm takes an arbitrary non-colored vertex to be the root of its connected
component and colors it with 1. Within each connected component, it runs BFS from
the given root to explore it. Each time BFS pivots over a vertex 𝑝 ∈ 𝑉 and enqueues its
neighbors, the algorithm also colors each neighbor with 3− 𝑐(𝑝), thus ensuring that all
colors are in the range {1, 2}.

It is important to note that the color of any given vertex is fully determined by the parity
of its level in the BFS tree. Since the root at level zero is set to 1, all vertices in the
second level are colored with 2, those in the third with 1, and so on.

𝑗 := 0
while 𝑗 < 𝑛 do

𝑟 = arbitrary non-colored vertex
𝑐(𝑟) = 1
𝑗 = 𝑗 + 1
𝑞𝑢𝑒𝑢𝑒 = {𝑟}
while 𝑞𝑢𝑒𝑢𝑒 ≠ ∅ do

𝑝 = 𝑝𝑜𝑝(𝑞𝑢𝑒𝑢𝑒)
for 𝑥 ∈ Γ(𝑝) do

if 𝑥 not colored do
𝑐(𝑥) = 3 − 𝑐(𝑝)
𝑗 = 𝑗 + 1
𝑝𝑢𝑠ℎ(𝑞𝑢𝑒𝑢𝑒, 𝑥)

fi
od

od
od
for {𝑥𝑦} ∈ 𝐸 do

if 𝑐(𝑥) = 𝑐(𝑦) do 𝑟𝑒𝑡𝑢𝑟𝑛 False fi
od
𝑟𝑒𝑡𝑢𝑟𝑛 True

The inner while runs BFS with a slight modification to color vertices when they are
enqueued and is thus 𝑂 (𝑚). It is executed per each connected component and the
number of connected components is 𝑂 (𝑛). ∴ The algorithm is polynomial.

That the algorithm correctly decides that a graph is two-colorable is trivial. To prove
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that it also correctly decides that a graph is not two-colorable, we shall prove a negative
answer entails the graph contains an odd cycle.

Assume the algorithm was executed over 𝐺 = (𝑉, 𝐸) and returned False. Then there
is some −→𝑥𝑦 ∈ 𝐸 , in a particular connected component C ⊆ 𝐺, s.t. 𝑐(𝑥) = 𝑐(𝑦). Let us
presume, without loss of generality, that 𝑥 was enqueued before 𝑦. Let us denote with
𝑟 the root of C from which BFS was ran.

Assume 𝑥 enqueues 𝑦. Then 𝑐(𝑦) = 3 − 𝑐(𝑥) ≠ 𝑐(𝑥), a contradiction. Then 𝑥 does
not enqueue 𝑦. But this can only happen if, when 𝑥 is the at front of the queue, 𝑦 was
already enqueued by some other vertex.

In particular, there is a vertex 𝑤 that is the vertex of greater level common to 𝑥 and 𝑦 in
the BFS tree—i.e. the vertex from which 𝑥 and 𝑦 diverge—. Let 𝜂(𝑤) be the level of
𝑤 in the BFS tree.

Consider the cycle 𝑤 . . . 𝑥𝑦 . . . 𝑤, which exists because all these vertices belong to C.
There are 𝜂(𝑥) − 𝜂(𝑤) edges from 𝑤 to 𝑥, and 𝜂(𝑦) − 𝜂(𝑤) edges from 𝑦 to 𝑤. There
is one extra edge for 𝑥𝑦. The total amount is then

𝜂(𝑥) − 𝜂(𝑤) + 𝜂(𝑦) − 𝜂(𝑤) + 1 = 𝜂(𝑥) + 𝜂(𝑦) − 2𝜂(𝑤) + 1

By assumption, 𝜂(𝑥) and 𝜂(𝑦) are both greater than 𝜂(𝑤). ∴ 𝜂(𝑥) + 𝜂(𝑦) > 2𝜂(𝑤) and
length of the path is greater than zero (sanity check).

Since 𝑐(𝑥) = 𝑐(𝑦), 𝜂(𝑥) ≡ 𝜂(𝑦) mod 2 and therefore 𝜂(𝑥) + 𝜂(𝑦) is even. Then the
length of the cycle is odd.

∴ 𝐶2𝑘+1 ⊆ C and 𝜒(𝐺) ≥ 3.

17



7.2 3SAT es NP-Completo
.

Let 𝐵 = 𝐵1∧ . . . 𝐵𝑚 an instance of SAT with variables 𝑥1, . . . , 𝑥𝑛. We build an instance
of 3-SAT by transforming each 𝐵𝑖 into an 𝐸𝑖 as follows:

Complete.

𝐸𝑖 = (𝑒1 ∨ 𝑒2 ∨ 𝑦1) ∧ (𝑦1 ∨ 𝑦2 ∨ 𝑒3) ∧ (𝑦2 ∨ 𝑦3 ∨ 𝑒4) ∨ . . . (𝑦𝑘−3 ∨ 𝑒𝑘−1 ∨ 𝑒𝑘)

We want to prove

∃−→𝑏 : 𝐵(−→𝑏 ) = 1 ⇐⇒ ∃−→𝛼 : 𝐵̃(−→𝑏 ,−→𝛼 ) = 1

(⇐) Asume 𝐵(−→𝑏 ) = 0. Then 𝐷𝑖 (
−→
𝑏 ) = 0 for some 𝑖. Let 𝑒1, . . . , 𝑒𝑘 be the literals in

𝐷𝑖 .

If 𝑘 = 3 a contradiction ensues trivially. If 𝑘 = 2, then 𝐷𝑖 = 𝑒1 ∨ 𝑒2 and then
𝐸𝑖 = (𝑒1∨𝑒2∨ 𝑦1) ∧ (𝑒1∨𝑒2∨ 𝑦1). Since 𝐷𝑖 = 0, 𝑒1∨𝑒2 = 0 and therefore 𝑒1 = 𝑒2 = 0
From this follows 𝐸𝑖 = 𝑦1 ∧ 𝑦1 = 1. (⊥)

If 𝑘 = 1 then 𝑒1 = 0 and therefore 𝐸𝑖 = (𝑦1∨ 𝑦2) ∧ (𝑦1∨ 𝑦2) ∧ (𝑦1∨ 𝑦2) ∧ (𝑦1∨ 𝑦2) = 0.
But by assumption 𝐸𝑖 = 1(⊥).

If 𝑘 ≥ 4 we must observe that, since 𝐷𝑖 (
−→
𝑏 ) = 0, we have 𝑒1 = 𝑒2 = . . . = 𝑒𝑘 = 0.

Then this literals are neutral elements in the disjunctions and can be ignored. Since
𝐸𝑖 (
−→
𝑏 ,−→𝛼 ) = 1, its first term is true; in other words, 𝑒1∨𝑒2∨ 𝑦1 = 1⇒ 𝑦1 = 1. In all the

following cases (except the last), 𝐸𝑖 = 𝑦𝑖−1 ∨ 𝑦𝑖 must be true; this is, 𝑦𝑖 ⇒ 𝑦𝑖+1 is true.
But the last term is 𝑦𝑘−3, which cannot be true because 𝑦1 and 𝑦1 ⇒ 𝑦2 ⇒ . . .⇒ 𝑦𝑘−3.
(⊥)

(⇒) Assume 𝐵(−→𝑏 ) = 1. For 𝑘 = 1, 𝑘 = 2, define 𝑦𝑖 = 0 for all 𝑖. ∴ 𝐷𝑖 (
−→
𝑏 ) = 1 ⇒

𝐸𝑖 (
−→
𝑏 ,−→𝛼 ) = 1. For 𝑘 = 3 the result is trivial. Let us consider the case 𝑘 ≥ 4.

Since 𝐷𝑖 (
−→
𝑏 ) = 1 is a true disjunction, at least one 𝑒𝑟 is true under

−→
𝑏 . Define the

following assignment:

𝑦1 = 𝑦2 = . . . = 𝑦𝑟−2 = 1
𝑦𝑖 = 0 para todos los demás 𝑖

Then

18



𝐸 (−→𝑏 ,−→𝛼 ) = (𝑒1 ∨ 𝑒2 ∨ 𝑦1) {True because 𝑦1 = 1}
∧ (𝑦1 ∨ 𝑦2 ∨ 𝑒3) {True because 𝑦2 = 1}
...

∧(𝑦𝑟−3 ∨ 𝑦𝑟−2 ∨ 𝑒𝑟−1) {True because 𝑦𝑟−2 = 1}
∧(𝑦𝑟−2 ∨ 𝑦𝑟−1 ∨ 𝑒𝑟 ) {True because 𝑒𝑟 = 1}
∧(𝑦𝑟−1 ∨ 𝑦𝑟 ∨ 𝑒𝑟+1) {True because 𝑦𝑟−1 = 0}
...

∧(𝑦𝑘−3 ∨ 𝑒𝑘−1 ∨ 𝑒𝑘) {True because 𝑦𝑘−3 = 0}

∴ Our assignment makes 𝐵̃ true.
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7.3 3-Color es NP-Completo
We shall prove 3-color is NP complete. In order to do this, we will prove 3-SAT ≤𝜌
3-Color. In other words, given an instance of 3-SAT of the form

𝐵 =
∧

𝑖 = 1𝑚 (𝑙𝑖1 ∨ 𝑙𝑖2 ∨ 𝑙𝑖3)

with each literal 𝑙𝑖 𝑗 a case of the variables 𝑥1, . . . , 𝑥𝑛, we shall provide an effective
procedure that constructs a special graph G s.t. G is 3-colorable iff 𝐵 is satisfiable.

(1 : Building G) We shall define G by parts; namely,

1. Two special vertices 𝑠 and 𝑡 that are connected.

2. 𝑛 triangles, each connecting the vertices in {𝑡, 𝑣𝑖 , 𝑤𝑖 : 1 ≤ 𝑖 ≤ 𝑛}

3. 𝑚 triangles formed by the vertices {𝑏𝑖1, 𝑏𝑖2, 𝑏𝑖3 : 1 ≤ 𝑖 ≤ 𝑚}

4. A tip 𝑢𝑖 𝑗 each connected to 𝑏𝑖 𝑗 and 𝑠.

Now let us define

𝜓(𝑙𝑖 𝑗 ) =
{
𝑣𝑘 𝑙𝑖 𝑗 = 𝑥𝑘

𝑤𝑘 𝑙𝑖 𝑗 = 𝑥𝑘

Then we also include in G the sides
{
𝑢𝑖 𝑗 𝜓(𝑙𝑖 𝑗 : 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 3)

}
. In other

words, we connect each tip 𝑢𝑖 𝑗 to either 𝑣𝑘 or 𝑤𝑘 , depending on what the literal 𝑙𝑖 𝑗 is.

This completes the construction of G. Now we shall prove G is 3-colorable iff 𝐵 is
satisfiable.

(2 : Proving ⇒) Assume G has a proper coloring of three colors or less. Since G
contains triangles, it must be a coloring of exactly three colors. We shall define

−→
𝑏𝑘 =

{
1 𝑐(𝑣𝑘) = 𝑐(𝑠)
0 𝑐(𝑣𝑘) ≠ 𝑐(𝑠)

and prove that 𝐵(−→𝑏 ) = 1. Proving this equates to proving there is at least one 𝑗 in
{1, 2, 3} s.t. 𝑙𝑖 𝑗 (

−→
𝑏 ) = 1 for any arbitrary 𝑖. To prove this, we shall take 𝑢𝑖 𝑗 and analyze

what is color entails about the truth assignment.

The triangle {𝑏𝑖1, 𝑏𝑖2, 𝑏𝑖3} must contain 𝑐(𝑡) at some 𝑏𝑖 𝑗0 fixed. Take 𝑢𝑖 𝑗0 . Note that
𝑐(𝑠) ≠ 𝑐(𝑢𝑖 𝑗0 ) ≠ 𝑐(𝑡). And since 𝜓(𝑢𝑖 𝑗0 ) cannot have the color of 𝑡, it must be the case
that 𝑐

(
𝜓
(
𝑢𝑖 𝑗0

) )
= 𝑐(𝑠). Now consider these cases.

Case 1. If 𝜓(𝑢𝑖 𝑗0 ) = 𝑣𝑘 , it follows that 𝑙𝑖 𝑗 = 𝑥𝑘 .j Then 𝑐(𝑣𝑘) = 𝑐(𝑠) ⇒ −→𝑏𝑘 = 1 ⇒
𝑙𝑖 𝑗 (
−→
𝑏 ) = 1. ∴ 𝐵𝑖 (

−→
𝑏 ) = 1.

Case 2. If 𝜓(𝑢𝑖 𝑗0 ) = 𝑤𝑘 then 𝑙𝑖 𝑗 = 𝑥𝑘 . Since 𝑐(𝑤𝑘) = 𝑐(𝑠) in this case, 𝑐(𝑣𝑘) ≠ 𝑐(𝑠)
and
−→
𝑏 𝑘 = 0. Then 𝑙𝑖 𝑗 (

−→
𝑏 ) = 1. ∴ 𝐵𝑖 (

−→
𝑏 ) = 1.
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In both cases, for an arbitrary 𝑖, the coloring of G allows us to define an assignment 𝑣𝑒3

that makes 𝐵𝑖 (
−→
𝑏 ) = 1. Of course, this assignment is s.t. 𝐵(−→𝑏 ) = 1. ■
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(3 : Proving⇐) Assume 𝐵 is satisfiable by a boolean vector
−→
𝑏 . Then for any given 𝑖

in [1, 𝑚] we have 𝐵𝑖 (
−→
𝑏 ) = 1. Then 𝑙𝑖 𝑗0 (

−→
𝑏 ) = 1 for (at least) a fixed 𝑗0, 1 ≤ 𝑗0 ≤ 3.

Let 𝐶 = {0, 1, 2} a set of colors and define 𝑐(𝑠) = 0, 𝑐(𝑡) = 1. Let

𝑐(𝑣𝑘) =
{
𝑐(𝑠) −→𝑏 𝑘 = 1
2

−→
𝑏𝑘 = 0

𝑐(𝑤𝑘) =
{

2
−→
𝑏𝑘 = 1

𝑐(𝑠) −→𝑏𝑘 = 0

Clearly, {𝑠, 𝑡} is properly colored and {𝑡, 𝑣𝑖 , 𝑤𝑖} is properly colored. All that is left is
to color the triangles with tips.

Let

𝑐(𝑢𝑖 𝑗 ) =
{

2 𝑗 = 𝑗0

𝑐(𝑡) 𝑗 ≠ 𝑗0

Of course, each
{
𝑢𝑖 𝑗 , 𝑠

}
is properly colored. But what about

{
𝑢𝑖 𝑗 , 𝜓(𝑙𝑖 𝑗 )

}
? Well, there

are two cases to consider.

If 𝑗 = 𝑗0, 𝑐(𝑢𝑖 𝑗 ) = 2 and 𝑙𝑖 𝑗 (
−→
𝑏 ) = 1. If 𝜓(𝑙𝑖 𝑗 ) = 𝑣𝑘 , this means 𝑥𝑘 (

−→
𝑏 ) = 1⇒ −→𝑏𝑘 = 1.

Then 𝑣𝑘 is colored with 𝑐(𝑠) ≠ 𝑐(𝑢𝑖 𝑗 ) and the coloring is correct. If 𝜓(𝑙𝑖 𝑗 ) = 𝑤𝑘 ,
entailing that 𝑙𝑖 𝑗 = 𝑥𝑘 , then

−→
𝑏 𝑘 = 0 necessarily, in which case 𝑐(𝑤𝑘) = 𝑐(𝑠) ≠ 𝑐(𝑢𝑖 𝑗 ).

If 𝑗 ≠ 𝑗0, then 𝑐(𝑢𝑖 𝑗 ) = 𝑐(𝑡). But 𝜓(𝑙𝑖 𝑗 ) ∈ {𝑣𝑘 , 𝑤𝑘} never takes the color of 𝑡, and the
coloring is correct.

All that is left is to color the triangle {𝑏𝑖1, 𝑏𝑖2, 𝑏𝑖3}. But this is trivial. Simply let
𝑐(𝑏𝑖 𝑗0 ) = 𝑐(𝑠), ensuring that

{
𝑏𝑖 𝑗0 , 𝑢𝑖 𝑗0

}
are properly colored, and color the remaining

two vertices with 𝑐(𝑡) and 2 in any order.

We have used
−→
𝑏 to define a 3-coloring of G. ■
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7.4 Trisexual marriage
We shall prove 3D-Marriage is NP-complete by proving 3-SAT ≤𝜌 3D-Marriage. In
order to do this, we shall build a tripartite 3-hypergraph, with parts of equal cardinality,
s.t. there is a perfect matching among the three parts iff an arbitrary instance of 3-SAT
is satisfiable.

Let 𝐵 be such instance with 𝑚 terms, 𝑛 variables 𝑥1, . . . , 𝑥𝑛, and literals 𝑙 𝑗𝑟 for 1 ≤
𝑗 ≤ 𝑚, 1 ≤ 𝑟 ≤ 3. Let 𝑘 ∈ {1, . . . , 𝑚(𝑛 − 1)}. Then we define the tree parts of the
3-hypergraph as follows:

𝑋 =
{
𝑎𝑖 𝑗

}
∪
{
𝑠 𝑗
}
∪ {ℎ𝑘}

𝑌 =
{
𝑏𝑖 𝑗

}
∪
{
𝑡 𝑗
}
∪ {𝑔𝑘}

𝑍 =
{
𝑢𝑖 𝑗

}
∪
{
𝑤𝑖 𝑗

}
for all possible combinations of their variables. It is trivial to see that their cardinalities
are the same and always equal 2𝑛𝑚.

We define the edges of the 3-hypergraph as the union of

𝐸0 =
{
𝑎𝑖 𝑗 , 𝑏𝑖 𝑗 , 𝑢𝑖 𝑗

}
𝐸1 =

{
𝑎𝑖 ( 𝑗+1) , 𝑏𝑖 𝑗 , 𝑤𝑖 𝑗

}
𝐸2 =

{
ℎ𝑘 , 𝑔𝑘 , 𝑢𝑖 𝑗

}
∪
{
ℎ𝑘 , 𝑔𝑘 , 𝑤𝑖 𝑗

}
𝐸3 =

{
𝑠 𝑗 , 𝑡 𝑗 , 𝑣 𝑗𝑟

}
where

𝑣 𝑗𝑟 =

{
𝑢𝑖 𝑗 ∃𝑖 : 𝑙 𝑗𝑟 = 𝑥𝑖

𝑤𝑖 𝑗 ∃𝑖 : 𝑙 𝑗𝑟 = 𝑥𝑖

We will prove this 3-hypergraph has a matching iff 𝐵 is satisfiable.

(⇒) Assume there is a perfect matching. Let 𝑖 an fixed and arbitrary element. Since
the matching is perfect, for any 𝑗 , 𝑎𝑖 𝑗 belongs to the matching. This could happen if
𝑎𝑖 𝑗 is a side of 𝐸0 or a side of 𝐸1.

It is trivial to see that if 𝑎𝑖 𝑗 is part of a side of 𝐸0, all sides of 𝐸0 belong to the matching
and no side of 𝐸1 belong to the matching. Call this Case 0. Similarly, one sees that if a
side of 𝐸1 belongs to the matching, all sides of 𝐸1 belong to the matching and no side
of 𝐸0 belong to the matching. Call this Case 1.

It should be evident that if Case 0 does not hold then Case 1 holds, and vice-versa.

Let
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−→
𝑏 𝑖 =

{
0 Case 0 holds for 𝑖
1 Case 1 holds for 𝑖

Since 𝐵 = 𝐵1 ∧ . . . ∧ 𝐵𝑚, we must only prove 𝐵 𝑗 (
−→
𝑏 ) = 1 for an arbitrary 𝑗 , which

amounts to proving there is some 𝑟 s.t. 𝑙 𝑗𝑟 (
−→
𝑏 ) = 1. But there are two cases for any

such 𝑙 𝑗𝑟 .

If 𝑙 𝑗𝑟 = 𝑥𝑖 , then 𝑣 𝑗𝑟 = 𝑢𝑖 𝑗 and
{
𝑠 𝑗 , 𝑡 𝑗 , 𝑢𝑖 𝑗

}
belong to the matching. Then

{
𝑎𝑖 𝑗 , 𝑏𝑖 𝑗 , 𝑢𝑖 𝑗

}
∈

𝐸0 cannot belong to the matching. Then we have Case 1. Then 𝑙 𝑗𝑟 (
−→
𝑏 ) = 𝑥𝑖 (

−→
𝑏 ) = 1.

Similarly, one proves 𝑙 𝑗𝑟 = 𝑥𝑖 entails Case 0, which entails 𝑙 𝑗𝑟 (
−→
𝑏 ) = 𝑥𝑖 (

−→
𝑏 ) = 1.

The assignment makes 𝐵(−→𝑏 ) = 1. ■

(⇐) Now assume there is some
−→
𝑏 s.t. 𝐵(−→𝑏 ) = 1. We shall define edges 𝐹0 ⊆

𝐸0, . . . , 𝐹3 ⊆ 𝐸3 to make up our matching. Let

𝐹0 =
{{
𝑎𝑖 𝑗 , 𝑏𝑖 𝑗 , 𝑢𝑖 𝑗

}
: 1 ≤ 𝑗 ≤ 𝑚 ∧ 𝑏𝑖 = 0

}
𝐹1 =

{{
𝑎𝑖 ( 𝑗+1) , 𝑏𝑖 𝑗 , 𝑤𝑖 𝑗

}
: 1 ≤ 𝑗 ≤ 𝑚 ∧ 𝑏𝑖 = 1

}
These are clearly disjoint. Now, since 𝐵(−→𝑏 ) = 1, for any 𝑗 there is some 𝑟0 s.t.
𝑙 𝑗𝑟0 (
−→
𝑏 ) = 1. We define

𝐹3 =
{
𝑠 𝑗 , 𝑡 𝑗 , 𝑣 𝑗𝑟0

}
If a vertex is common sides in 𝐹0 and 𝐹3, this entails 𝑣 𝑗𝑟0 = 𝑢𝑖 𝑗 which entails 𝑙 𝑗𝑟0 = 𝑥𝑖 .
But our assumption is 𝑏𝑖 = 0, which contradicts 𝑙 𝑗𝑟0 (

−→
𝑏 ) = 1. The sets are disjoint.

Similarly, one sees 𝐹1 and 𝐹3 are disjoint. So we have provided a matching. However,
our matching is not perfect, because we have left some vertices of 𝑍 uncovered. Let

𝑁 = {𝑧 ∈ 𝑍 : 𝑧 not covered by 𝐹0, 𝐹1, 𝐹3}

Let 𝑝 = | {𝑖 : 𝑏𝑖 = 0} |, 𝑞 = | {𝑖 : 𝑏𝑖 = 1} |, s.t. 𝑛 = 𝑝+𝑞. It is clear, due to the definition
of these sets, that

|𝑍 − 𝑁 | = |𝐹0 | + |𝐹1 | + |𝐹3 |
= 𝑚𝑝 + 𝑚𝑞 + 𝑚
= 𝑚(𝑝 + 𝑞 + 1)
= 𝑚(𝑛 + 1)

Now,
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|𝑁 | = |𝑍 | − |𝑍 − 𝑁 | = 2𝑛𝑚 − 𝑚(𝑛 + 1) = 𝑚(𝑛 − 1)

This readily entails there is a bĳection 𝑓 : {1, . . . , 𝑚(𝑛 − 1)} → 𝑁 . Thus, we define

𝐹2 = {ℎ𝑘 , 𝑔𝑘 , 𝑓 (𝑘)}

Since 𝑓 is a bĳection, the sides in this set have no vertices in common (injection) and
all vertices are covered (surjection).

∴ 𝐸 (𝑀) = ⋃3
𝑖=0 𝐹𝑖 induces a perfect matching.
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