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1 Taylor

Let f € C"[a, b] and assume f*) exists in (@, b). Then for any ¢,x € [a, b] there is some ¢
between ¢ and x s.t.

noor(k) — )k
= Y LD g (1)

!
= k!

where

_JU @) o
B (n+1)!

E,(x)
Equation (1) is called the Taylor expansion of f around c.

Observation. The famous mean value theorem is simply the case n = 0 of Taylor’s expansion: if
f € Cla, b] and f’ exists on (a, b), then for x, ¢ € [a, b]

f@x) =f()+f(§)(x=c)

where { is between ¢ and x. Take x = b, ¢ = a and the theorem appears:

f(b) = fa)=f'(5)(b-a)

We typically extend the Taylor approximation of f around a point r, where r = x + h is an
approximation some value of interest x. This is useful because said approximation gives

" 0
F) = fx+h) = f(x) +f’(x)h+fT(x)h2+...+ / n'(x)h”+E,,(h)

In other words, this strategy allows us to extend f(r) in terms of x and /4, the approximation and
its error. Usually, r, h are unknown but 4 can be bounded.
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2 Alg. de Horner: Polynomial evaluation

Consider
n .
p(x) = Z a;x'

i=0

We wish to compute p(k) for a given k € R minimizing the number of operations. Directly

computing ag + arky + ... leads to n sums. The ith term requires computing k’, which means i

product operations, for a totall of 3.\, i = @ products. The total number of operations is then

O=n+nn+1)/2

The associated complexity is O(n?).

Horner’s method consists of re-writing p(x) so that the number of products is reduced. One writes

p(x) =ap+xby

where b,,_1 =a, andfor0 <i <n-1:
bi—l = a; +)Cb,'

Let p(x) = 3 + 5x — 4x> + Ox> + 6x*, giving n = 4. Then b3 = 6 and

by = a3 +xbz = 6x, by =as +xby = —4 + x(6x),
bo=ay+xb; =5+x(-4+x(6x))

This finally gives

p(x) =3+xby=3+x(5+x(—4+x(6x)))

Here, one must perform n sums again but only n products. Thus, there are ® = n+n = 2n
operations, giving a complexity of O(n) (in the operation space). See the algorithm below:



inputn;a;,i=0,...,n;x
bn—l < dap
fori=n-2toi=0

bi = aj+1 +x % by
od
Yy« ap+x * by
return y

It is easy to see in this code that the for loop performs n — 1 iterations, in each of which a single sum
and a single product are computed. The nth sum and nth product are performed in the computation
of y, the final result.

A more polished version includes the last computatoin (the one in the assignment of y) within the
loop and makes no use of indexes:

input n;a;,i =0,...,n;x

b« a,

fori=n-2toi=-1
b=aj;1+x=b

od

return b

In Python,

def horner(coefs, x):
n len(coefs)-1
b = coefs[n]

for i in reversed(range(-1, n-1)):
b = coefs[i+1] + x*b

return b

It is trivial to adapt the code so that it returns the coefficients by, . . ., b,—; and not the final result,
if needed.



3 Error

Let r, 7 be two real numbers s.t. the latter is an approximation of the first. We define the error of
the approximation to be r — 7, and

Ar=|r-7|, or = —

With r unknown the strategy is to work with a known bound of r.



4 Non-linear equations

The general problem is to find members of the set R of roots of f € R — R. The numerical
strategy is to iteratively approximate some r € Ry until some pre-established threshold in the error
of approximation is met.

More formally, the numerical strategy produces a sequence {xx }; <y Which satisfies

* limg o {xr} = r for some r € Ry

* Eithere(x;) < e(xg—1) or, more strongly, limy_, e(x;) = 0, where e(x) is some appropriate
measure of the error of approximation.

4.1 Bisection

A very simple procedure: if a root exists in [a, b], it iteratively shrinks [a, b] in halves (keeping the
halves which contain the root) until the interval is of sufficiently small length or the root is found.

Theorem 1 (Intermediate value). If f is continuous in [a, b] and f(a) f(b) < 0, then Ir € Ry s.t.
r € |a,b].

Assume f is continuous. A root exists in [a, b] if f(a) f(b) < 0 (Theorem 1). If that is the case,
the midpoint (a + b)/2 is taken as the approximation xq. It is also trivial to observe that xq is at
most at a distance of (b — a)/2 from the real root, so eg = |xg —r| < (b —a)/2.

If f(xp) = 0 the procedure must end because a root was found. Otherwise, sufficies to find which
half of the interval contains a root computing f(a)f (c) and, if needed, f(c)f(b).

The iterations may stop after reaching a maximum number of steps, when |f(c)| is sufficiently
close to zero, or when the error bound |ex| < (by — ax)/2 (where [ag, bi] is the interval of this
iteration) is sufficiently small.

(!) The algorithm not always converges. Take f(x) = 1/x. Clearly, it has no root. Yet setting
a = —1,b =1 in the initial iteration falsely passes the test. (The problem obviously is that f is not
continuous in [—1, 1].) If one sets



Input : a,b,6, M, f

Output : Tupla de la forma: (r, cota de error)
Ja = f(a)

Jo < f(b)

if fa * fb >0
return ?
fi

fori=1toi=Mdo
c—a+(b-a)/2
Je < f(c)
if /. = 0 then
return (c, 0)

if € < 6 then
break
fi
if f, = f. <0 then
b—c
fo = f(b)
else
a<c

fa = f(a)

od
return (c, €)



def bisection(f : callable, a : float, b : float, delta : float, M : int):
s, e = f(a), f(b) # function values at (s)tart, (e)nd of interval

if s*e > 0:
raise ValueError("Interval [a, b] contains no root.")

for i in range(l):

c =a+ (b-a)/2
m = f(c) # value of f at (m)idpoint
ifm ==
return c, 0
e = (b-a)/2

if e < delta:
return c, e

if s*m < O:

b =c

e = f(b)
else:

a=c

s = f(a)

return c, e



Theorem 2. If {[a;, b;]}, are the intervals generated by the bisection method on iterations
i=0,1,..., then:

1. lim,; e a, = lim, .« b, is a member of R.

2. Ifc, = %(a,, +b,),r =lim,_,« ¢y, then |r — ¢,| < ﬁ(bo —aop)

Proof. (1) It is clear that a; < a;4+1 and b; > b;.1, since the interval on each iteration shrinks
in one direction.

.. a, b, are monotonous.

But clearly a,, is bounded by bg and b,, is bounded by ag.
.. an, b, are monotonous and bounded.

.. Their limits exist.

It is also clear that the interval shrinks to half its size on each iteration:

1
by, —an= E(bn—l - an—l), n>1 (D
By recurrence on (1),
1
bp—an = 2_n(b0 - aO)a n>0 (2)
Then
. . . .1
lim a, — lim b, = lim (a,, — b,;) = lim —(by —ag) =0 3)
n—oo n—oo n—oo n—co 2N

colimy, e ay = 1My 00 by,

Since the limit of a,, b, exists and f is by assumption continuous, the composition limit
theorem applies and:

= lim f(a,) - lim f(b,) {Product of limits}
=f ( lim an) - f ( lim bn) {Composition limit theorem}
=[] fr = 1im a,} )

The invariant of the algorithm is f(a,) f(b,) < 0. But due to the last result,

lim f(an)f(bn) <0 &= [f(N?<0 & f(r)=0

cor =1limy, e an = limy, 00 by, 1S a TOOL.



(2) Follows directly from result (2)

|r —cnl =

1
r—= E(bn _an)

<

1
E(bn - an)

1
2n+1

(bo — ao) {Result (2)}




4.2 Newton’s method

Assume r € Ry and r = x + h, with x an approximation of r and £ its error. Assume f” exists and
is continuous in some / around x s.t. r € I. What we explained on Taylor expansions around a
point gives:

0=f(r) = flx+h) = f(x)+ f(x)h + O(R°)

If x is sufficiently close to r, 4 is small and 4? even smaller, so that O(4?) is unconsiderable:

0~ f(x)+hf'(x)
Therefore,
W
MTTES M

From this follows that r = x + A is approximated by

G
)

Since the approximation in (5) truncated the terms of O(h?) complexity, this new approximation
is closer to r than x originally was. In other words, x — f(x)/f’(x) is a better approximation to r
than x itself.

Thus, if x¢ is an original approximation, we can define

J (xn)

_ 2
o) @

Xn+l = Xn

to produce a sequence of approximations. This is the fundamental idea of Newton’s method.
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Input: xg, M, 0, €;
v — f(xo)
if |v| < € then return x fi

fork=1tok =M do
\%

1 (xo0)

X1 €< X0 —

v e f(x1)
if |x;1 —xp| <6 Vv < € then
return x;
fi
X0 <— X1
od

return x

The predicate |x; — xg| < & checks whether our algorithm is adjusting x in a negligible degree. If
that is the case, we should stop.

Theorem 3. If f” continuous around r € Ry and f’(r) # 0, then there is some 6 > 0 s.t. if
|r — xo| < &, then:

* |r—x,| <dforalln > 1.
* {x,} converges to r
* The convergence is quadratic, i.e. there is a constant ¢(d) and a natural N s.t. |r — x,41| <

clr—x,|* foralln > N.

Proof. Let ¢,, = r — x,, be the error in the nth approximation. Assume f’’ is continuous and
f(@r)=0, f'(r) #0. Then

€n+l =1 — Xnsl

_ ( f(xn))
=r—|x,

 f(x)
L fw)
=r Xn + f’(xn)
_ enf (xn) + f(xn)
IS 2

Thus, the error at any given iteration is a function of the error at the previous iteration. Now
consider the expansion of f(r) as

11



2 1
F) = £ en) = Flon) + enf () + 21 @

for ¢, between x, and r. This equation gives

enf"(n) + F ) = =5 1" () ©

The expression in (5) is the numerator in (3), whereby we obtain via substitution:

I (A
T ()

Equation (6) ensures that the error scales quadratically. Now we wish to bound the error
expression in (6). To bound e,.1, we take 6 > O to define a neighbourhood of length § around
r. For any x in this neighbourhood, (6) reaches its maximum when the numerator is maximized
and the denominator is minimized:

(6)

1 max|,_,<s | f7(x)]
c(6) = = —
2 minjx_r|<s|f(x)|

In other words, ¢(0) is the maximum value which e,,4; can take if £, x, are assumed to belong
to the neighbourhood. Now we make two assumptions:

1. xo belongs to the neighbourhood, i.e. |xg —r| < &

2. ¢ is sufficiently small so that o := 6¢(d) < 1.

Note that, since {j is between xg and r, assumption (1) ensures that {j is also in the neighbour-
hood, i.e. |r — {y| < 6. Then we have:

leol = 3 117 @)/ (x0)] < €(6)

Then:

|x1 — 7| = |e1]

= |3 3@/ (o)

< 16}1e(6) {37 @i o < clo))
< leoldc(0) {leol < 6}
= leol 0 (0 =6c(9))
< leol {o<1}
<o

- le1] < |eg| < 8, which means the error decreases. This argument may be repeated inductively,
giving:
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ler] < oeol
leal < oler] < 0% el

3
les| < olea| < 07 |eg]

In general, |e,| < 0" |eg|. And since 0 < ¢ < 1, we have o — 0 when n — oo, entailing that
len]| — 0 when n — co.

Theorem 4. If f” is continuous in R, and if f is increasing, convex, and has a root, then said root
is unique and Newton’s method converges to it from any starting point.

Recall that f is convex if f”(x) > O for all x. Graphically, it is convex if the line connecting two
arbitrary points of f lies above the curve of f between those two points.

4.3 Secant method

In Netwon’s method,

J (xn)
I (xn)

Xn+l = Xp —

The function of interest is f. We cannot escape computing f (x;,), but it would be desirable to avoid
the computation of f”(x,), which may potentially be expensive. Since

J(x) - f(n)

/ :1
fi(x) hl—rg x—h

it is natural to suggest

S (xn) = f (xn-1)

Xn — Xn-1

[ (xn) » 6]

Graphically, this means we are not using the line tangent to the point (x,, f(x,)) but the line secant
to the points (x,, f(x,) and (x,-1, f (x,-1)). The point x,,;; is then the value of x where this secant
line has a root.

13



4.4 Fixed point iteration

The key observation is this: if r € Ry, then g(x) = x — k f(x) has r as fixed point, for any k € R.
Inversely, if g has a fixed point in r, then r € Ry.

Theorem 5. (1) Let g € C|[a, b] and assume g(x) € [a, b] for all x € [a, b]. Then there is a fixed
point of g in [a, b].

(2) If, on top of previous conditions, g is differentiable in (a, ») and there is some k < 1 s.t.
lg’(x)| < k for all x € (a, b), then the fixed point referred in (1) is unique.

Theorem 6 (Mean value theorem). Let f : [a,b] — R continuous and differentiable on (a, b)
with a < b. Then there is some ¢ € (a, b) s.t.

f,(C) — f(b) _£(a)

b —

The interpretation is simple: consider the line secant to f on a, b. The theorem ensures that there
is some point c s.t. the line tangent to c is parallelt to said secant (equal slopes).

Proof. (1) If a or b are fixed points the proof is done so assume otherwise. Since g(x) € [a, b],
we have g(a) > a and g(b) < b.

Take ¢(x) = g(x) — x, which is continuous and defined in [a, b]. Then

¢(a) =g(a) —a >0, o(b)=g(b)-b <0

Then ¢(a)p(b) < 0. Then, by the intermediate value theorem, ¢ has a root in (a,b). In
otherwords, there is at least one p s.t.

¢(p)=¢(p)-p=0
.. g(p) = p is a fixed point of g.

(2) Assume two distinct fixed points p, g exist in [a, b]. The mean value theorem ensures the
existence of some ¢ between p, g (and thus in [a, b]) s.t.t

g(a) —g(b)
a—->b

By hypothesis, |g’(x)| < k < 1. Since p, g are assumed to be fixed points, equation (1) gives:

g ()= = g'({)(a-b)=g(a)-g(b) (1)

lp —ql=1g(p) —g(q)]
=1g"(DIlp -4l
<klp-ql<lp-4ql

14



But this is absurd. The contradiction arises from assuming p, g to be distinct. Therefore, the
fixed point is unique.

The fixed point algorithm begins with an approximation pg. Then,

Pn=28(Pn-1)

If g continuous and the sequence converges, then it converges to a fixed point, since:

p:= lim p, = lim g(p,-1) =g (,}Lngo pn—l) =g(p)

Input: p, M, 6

Pprevious = P
fori=1toi=Mdo

p<—g(p)
if |p - pprevious| < 6 then

return p
fi
Pprevious = P
od
return p

Theorem 7. Let g € Cla, b] be a self-map of [a, b] differentiable in (a, b). Assume there is a
constant 0 < k < 1 s.t. |g'(x)| < k forall x € (a, b).

For all pgy € [a, b], the sequence p, = g(p,—1) converges to the unique f ixed point p in (a, b).

Proof. The mean value theorem ensures that

|pn—pl=18(Pu-1) — (P
= 18" (Z)(pn-1 = P)]
< k|pn-1-pl

with £, € (a, b). More succintly, with e,, := p, — p,

len| < klen-1] < klena| <... < kleol

By recurrence,

15



len] < K" |eol

Since 0 < k < 1, k" — 0 when n — oo, which entails |e,,| — 0 when n — co. It follows that
{pn} — p whenn — oo,

Now let us consider the error of this method. Take p, = p + e, and consider the Taylor expanssion
of g around p evaluated at p,, = p + e,:

(@) (m)
g(pn) =8(p+en) = Z : (p) nt ]Zn +(f;!) en 2

See that in (2), n corresponds to the iteration we are dealing with, and thus £, and e,, depend on it.
On the contrary, m is the degree to which we expand the series of g around p evaluated at p,,. We
also assume that £, lies between p, and p.

By definition, g(p,) = pus1 50 (2) is nothing but an expression for this value. Assume g*)(p) =0
fork=1,2,...,m—1,but g (p) # 0. Then

€n+l = P+l — P

=g(pn) —g(p)
MG
T m! €n

More succintly,

g(m) (¢n) m
m

€n+l = ' n
Then

. e m

lim €21 = 18" (p)]

n—co | en m!

which is a constant. In conclusion, if the derivatives of g are null in p up to the order m — 1, the
method as an order of convergence of at least m. Three results follow from this fact.

16



5 P2

(1) Let f(x) = (x+2)(x+1)%x(x = 1)3(x = 2). To which root does the biscection method converge
on the following intervals?

[-1.5,2.5], [-0.5,2.4], [-0.5, 3], [-3,-0.5]

(a) The midpoint of Iy = [—-1.5,2.5] is ¢ := (2.5 -1.5)/2 = 1/2. Since f(a)f(c) < 0, we have
Iy = [-1.5,0.5]. The midpoint of I; is ¢; = —0.5, so I, will be [-0.5,0.5]. The only root in this
interval is r = 0, so the algorithm converges to it.

(b) The midpoint of Ip = [-0.5,2.4] is ¢ := (2.4 - 0.5)/2 = 0.95. Then I; = [-1.5,0.95]. Same
logic gives ¢; = —0.725 and then I, = [-0.725,0.95]. The only root here is zero again.

(¢, d) Same.

17



(2) We wish to find a root of f in [a, b] using bisection method and ensuring that the error is not
greater than € € R™.

(a) Estimate the number of iterations sufficient to meet the criterion.

(b) What is the number of iterations fora = 0,b = 1,€ = 10752

Let e, = x, — r. It is trivial to note that |e,| < %. Furthermore, the length of /; is half the

length of Iy, that of I is half that of Iy, etc. In other words,

b—-a b-a b-a
el <55 el <50 el £ 255

In general,

b—-a

len| < o+l
Imposing

b-a

|e”| < on+l

we satisfy our criterion, but we wish to express this bound in terms of n. Now, clearly,

which is our final answer.

(b)Fora=0,b=1,e = 1073, we need

18



so n = 17 would suffice.
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(3) Determine graphically some root of f(x)

= 4sinx + 1 — x and perform three iterations of the

bisection method to approximate. How many steps are needed to ensure an error less than 10737

Let us unveil the full power of LaTex:

10 |

f(x)

6 4 5/

-5

—f(x) =

4sin(x)+1—x

I’m too lazy to perform the steps of the algorithm. The number of steps needed again are given by

n =

so taking n = 11 suffices.

)

~ 10.96
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(4) Let a > 0. Computing +/a is equivalent to finding the root of f(x) = x* — a.
(a) Show that Newton’s sequence for this case is

1 a
xn+1:§ xn+x_n

(b) Prove that f or any xo > 0, the approximations {x,} satisfy x,, > va forn > 1.

(c¢) Prove {x,} is sdecreasing.

(d) Conclude that the sequence converges to va

(a) In Newton’s algorithm,

Xpel = Xy — f(xn)
" " S (xn)
Clearly,
d
f1) = —(*—a) =2
dx
Therefore,

x2-a
Xn+l = Xp — 2%,
1 a
~n-3 (-5}
1 1a
2T

(b) Let xo > 0. Recall that, among all Pythagorean means, the arithmetic mean is the greatest,
asuming positively-valued vectors. In particular, it is greater or equal to the geometric mean:

1 n n
N;yi 24 g)’i
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for any set of points yy, ..., y, all positive. In particular,

(c)

which is true due to point (b).

(d) Let e, = x, — Va. We have shown {x,} to be decreasing and bounded below by +/a. Therefore,
it converges to a limit L (with L the infimum of {x, }). Then

lim ! lim ;2 1L+ a
im x, = = lim |x,- =—-L+—
noeo " T 2o\, ) T 27 T 2L
This induces the equation
L a L a
L = — 4+ — _ = —
2 2L 2 2L
— L’=q
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(5) Propose an iteration formula to approximate La , with a > 0, using Newton’s method. Decide

the number of iterations needed so that the relative error in the approximation is less than 10~#
when starting from xo = 1 and taking a = 5.

Error: e, = r — x,,, quadratitc, i.e. |r — x,41| < c|r — X%

(a. Iteration formula) Let ¢ > 0 and assume we wish to approximate 1/+va. Let ¢ = 1, so that

a’
% = y/¢. We see that we can express the problem of finding the reciprocal of a root in terms of a

simple root.

We know from the previous excercise that the iteration formula for /¢ is

1
Xn+l = 5 (xn + xi;)

Now take xo = 1 and a = 5, so that ¢ = % The relative error of approximation on iteration 7 is

Brute-forcing allows us to see that x, x1, x2, x3 do not meet the criterion, but

x4 = 0.4472137791286728 ( jaja )

has eq < 1074,
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(6) Propose an iteration formula for VR where R > 0. Plot the function to see where the procedure
converges.

Observe that finding VR is equivalent to finding a root of f(x) = x> — R.

— f(x) =3 J(x)
20 |

But f(x) is simply a vertical displacement of x>, so %x3 = % f(x) (which holds algebraically).
In particular, the derivative of x* approaches 0 as x — 0, meaning that Newton’s method will fail
to converge for intervals of length L around O (with L unspecified). The graph suggests that an
appropriate value for L is 1.

That said, since % fx) = %x3 (in other words, since the derivative of the function is independent

of R), and d%x3 = 3x2, we propose

Xntl =Xn — —5 =Xp— 5 =

3x2 3 3
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2x
1+x2

(7) (a) Utilizando el teorema del valor intermedio, demostrar que g(x) = arctan(x) — tiene

raiz @ € [1, V3].

(b) Then show that if {x,} is the sequence generated by Newton’s method for f(x) = arctan(x),
with xo = a, it is the case that x,, = (—1)"a.

(a) It is known that arctanx is continuous in R. Since 1 +x% > 0 for all x, 2x/(1 + x?) is also
continuous in R. .". g is continuous in R. And it is easy to verify as well that g(1)g(V/3) < 0.

.. By virtue of the intermediate value theorem, there is a root @ of g in [1, \/§],

(b) Letg(x) = arctanx, go(x) = % sothatg = g1—g». Sincea > 0, wehave g; (@) > 0, g2(a) >

0. And since g(a) = 0 if and only if g; (@) — g2(a@) = 0, we conclude that g; (@) = g2(a). In other
words,

2a
arctana = 1
Tl M
Since the derivative of arctan x is 1/(1 + x?), equation (1) may be expressed as follows:
arctan @ = 2« arctan’ () )
This entails that
t
arctan’ @ = =0 & 3)
2a

Now take xo = a and consider Newton’s sequence for f(x) = arctanx = g;(x). Clearly,

o @
/(@)
2
= @ — arctan @ X @ {Eq. (3)}
arctan @

=a -2

=—a
Same logic gives x» = @, x3 = —a, ... and the result should be easy to generalize.
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(8) Consider for the fixed-point iteration the following functions, whose least positive root we wish
to find:

p(x)=x>—x -1, Y (x) =2x —tanx, p(x) = exp(—x) —cosx

Find an iteration function and an interval which guarantees the method’s convergence.

(¢) Let us analyize ¢ in order to ascertain where its roots are.

Consider that ¢’(x) = 3x? — 1, which means ¢’ has roots wherever 3x%> = 1, which holds if and
only if x? = %, or equivalently x = ig. Furthermore, ¢’(x) < 0 in the region (—V3/3, V3/3) and
#’'(x) > 0 elsewhere. In conclusion, ¢ is decreasing in (—V3/3, V3/3) and increasing everywhere
else.

Now, observe that ¢ (\/§ / 3) < 0. Combined with the fact that ¢ is increasing in (V3/3, co), this
means there is aroot of ¢ in this interval. (Note that ¢ is a polynomial without asymptotic behavior.)
Furthermore, ¢ (—\/§ / 3) < 0. Again, this means there is no root in (oo, V3/3).

.. ¢ has one and only one root and it belongs to (V3/3, ).

Now, suffices to note that f(1.3)i < 0, f(1.4) > 0, and the intermediate value theorem ensures that
there is a root in (1.3, 1.4). .. The only root of ¢ lies within (1.3, 1.4).

Now, we need only propose a function f s.t. r is a fixed-point of f and f(x) € (1.3, 1.4) for all
x € (1.3, 1.4). Consider that

p(x)=0 & P =x+1 & x=Vx+1 (4)

So letting f(x) := Vx+ 1 ensures that the fixed point of f is the root of ¢. Furthermore,
f(1.3) = 1.32, f(1.4) = 1.33. Now,

1

VJ(x+1)2

Since f’(x) > 0 (asis simple to note), we know f is increasing, which means all f(x) € (1.32,1.33)
for x € [1.3,1.4]. Furthermore, f’(x) € (0, 1) and f’(x) is clearly decreasing. This means that in
[1.3,1.4], f/ has its maximum at f’(1.4) ~ 0.573. In other words, if we let k = 0.573, we know
lg’(x)| =g’ (x) < kforall x € [1.3,1.4].

f'(x) =
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. f is a self-map of [1.3, 1.4], differentiable in (1.3, 1.4), and there is a constant k € (0, 1) s.t.
lg’(x)| < k for all x € (1.3, 1.4)—where incidentally this constant is g’(1.3). ]

.. By virtue of Theorem 7, the fixed-point algorithm will converge to the unique rootr € (1.3, 1.4)
if using the iteration function f(x) = Vx + 1 and the interval [1.3, 1.4].
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(¥) Let ¢ (x) = 2x — tanx. A root exists for i (x) whenever

tanx 2sinx
X = —=
2 COS X

So we may define g(x) := tanx/2 guarantying that any fixed point of g is a root of . Now, tan(0 = 0
entails that g(0) = 0. Furthermore, g(7/4) = 1/2. Since g’(x) = sec’(x)/2 is strictly positive, g is
strictly increasing and this means for x € [0, 7] we have g(x) € [0, 1/2] ¢ [0, 7].

. g isaself-map in [0, 7/4].

.. There is a fixed-point of g in [0, 7/4].

1
2cos?x”

geometrically obvious that, for all x € [0, /4], V2/2 < cosx < 1, which means 1/2 < cos?x < 1.
In particular, g’(x) reaches its maximum when cos” x reaches its minimum, so g’(x) reaches its

maximum at x = %:

Consider now g’(x) = % sec?(x) = This is clearly bounded in (0, 1]. To be more precise, it is

1 1

2cos? § - 2. 1/2 -

g (n/4) = 1

It follows that there is some constant k € (0, 1) such that |g’(x)| < k for all x € (0, 7/4).
.. There is a unique fixed point of g in [0, 7/4].

.. There is a unique root of ¥ (x) in [0, /4] and the iteration method converges to it using this
interval and the iteration function g.
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(¢) Consider ¢(x) = exp(—x) — cos x. This function is zero if and only if e™ = cosx, which may
be expressed as x = —In (cosx). In other words, the roots of ¢ correspond to the fixed points of
f(x) = —In(cosx).

Now, —1 < cosx < 1 but In is defined only in R*. From this follows that f is defined only when
cosx > 0, i.e. in the right-hand half of the unite circle. This corresponds to values of x in [0, 7/2)
or (37/2,2n] (extended by any factor 27k, k € Z).

Take I := [0, /4] C Dom(f). See that £(0) = —In(1) = 0 and f(n/4) = —In(V2/2) ~ 0.346 <
7t /4. Furthermore, with u = cos x,

df d d sin x
- =1 — =
dx du n(u) X dx cosx COS X

=tanx

which is strictly positive in [0, 7/4]. This suffices to prove that f(x) € [0, /4] forall x € [0, 7/4].
. fis a self-map of [0, 7/4].
.. There is a fixed point of f in [0, 7/4].

Now, tan x is increasing in [0, 7/4] and, in particular, tan0 = 0, tan% = 1. This suffices to show
that |g’(x)| < 1 for all x € (0, /4).

.. There is a unique fixed point of f in [0, 7/4] and the fixed point iteration algorithm converges to
it when starting from said interval with f as iteration function.
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(10) Let x,,+; = 2*~! the formula used to solve 2x = 2*. What interval should be chosen to ensure
{x,} is convergent? Calculate its limit.

The fixed-point algorithm uses the formula p, = g(p,-1) where g is a function s.t. the fixed
points of g are roots of some original function of interest f. In this case, clearly g(x) = 2*!. To
ensure convergence, we must find an interval / s.t. g is a self-map of / and g’ lies within a unit
neighbourhood of 0.

Now, clearly the equation 2x = 2* has solutions x = 1,x = 2, and no other. So whatever self-map /
we build must contain either 1 or 2. So take I = [0, 1].

Clearly, if x € I, then —1 < x — 1 < 0. This means 2*~! has exponent at least —1, when
g(0) =271 = % Furthermore, 2°~! has exponent at most 0, when g(1) = 2° = 1. This suffices to
show that g(x) € I forall x € I.

Now,

d d d
— 2l ot — (x=1)=2%1
dx du % dx -1 n

In short, g’(x) = 2*"'In(2). For x € [0, 1], we have already established that 0 < 2*~! < I.
Therefore, 0 < g’(x) < In(2) < O for all x € [0, 1]. In other words, g’ lies within a unit-distance
of zero when its domain is restricted to /.

.. The algorithm converges to the unique solution of 2x = 2* in [0, 1] (which is 1) when starting
from said interval with iteration function g.
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(11) Suppose {x,} converges to r and that x,,; = g(x,) where |g(y) — g(x)| < A|y — x| for all
x,y with 4 € (0, 1). Determine the error bound on each iteration as a function of the difference
between the last two iteration values. In other words, find C s.t.

|Xpe1 = 7| < C X041 — X4

Recall that x,,.1 = g(x,). This means

[ner =7l =18 (xn) = 1|

But r is a fixed-point of g, i.e. r = g(r). Then

g (xn) =7 = |8 (xn) — g(r)]

By assumption, then,

Xpet = 1| =g (xn) — g(r)]
< Alx, —r|

Recall that |e,| = |x, — r| < k" |e,—1| for some k € (0, 1). Since the property above holds for any
A € (0, 1), it holds for said k.

Since |x, — r| < k" |e,—1], and k" € (0, 1) entails k" |e,—1| < |en—1]|, we have |x, — r| < |x,—1 — 7.
In other words, successive approximations in the sequence become increasingly closer to r.

Xnel = 1| <k |xy =1

But we also have
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