
https://famaf.aulavirtual.unc.edu.ar/course/view.php?id=254

1 Taylor

Let 𝑓 ∈ 𝐶𝑛 [𝑎, 𝑏] and assume 𝑓 (𝑛+1) exists in (𝑎, 𝑏). Then for any 𝑐, 𝑥 ∈ [𝑎, 𝑏] there is some 𝜁

between 𝑐 and 𝑥 s.t.

𝑓 (𝑥) =
𝑛∑︁

𝑘=0

𝑓 (𝑘) (𝑐) (𝑥 − 𝑐)𝑘
𝑘!

+ 𝐸𝑛 (𝑥) (1)

where

𝐸𝑛 (𝑥) =
𝑓 (𝑛+1) (𝜁) (𝑥 − 𝑐)𝑛+1

(𝑛 + 1)!

Equation (1) is called the Taylor expansion of 𝑓 around 𝑐.

Observation. The famous mean value theorem is simply the case 𝑛 = 0 of Taylor’s expansion: if
𝑓 ∈ 𝐶 [𝑎, 𝑏] and 𝑓 ′ exists on (𝑎, 𝑏), then for 𝑥, 𝑐 ∈ [𝑎, 𝑏]

𝑓 (𝑥) = 𝑓 (𝑐) + 𝑓 ′(𝜁) (𝑥 − 𝑐)

where 𝜁 is between 𝑐 and 𝑥. Take 𝑥 = 𝑏, 𝑐 = 𝑎 and the theorem appears:

𝑓 (𝑏) − 𝑓 (𝑎) = 𝑓 ′(𝜁) (𝑏 − 𝑎)

We typically extend the Taylor approximation of 𝑓 around a point 𝑟 , where 𝑟 = 𝑥 + ℎ is an
approximation some value of interest 𝑥. This is useful because said approximation gives

𝑓 (𝑟) = 𝑓 (𝑥 + ℎ) = 𝑓 (𝑥) + 𝑓 ′(𝑥)ℎ + 𝑓
′′ (𝑥)
2

ℎ2 + . . . + 𝑓 (𝑛) (𝑥)
𝑛!

ℎ𝑛 + 𝐸𝑛 (ℎ)

In other words, this strategy allows us to extend 𝑓 (𝑟) in terms of 𝑥 and ℎ, the approximation and
its error. Usually, 𝑟, ℎ are unknown but ℎ can be bounded.

1

https://famaf.aulavirtual.unc.edu.ar/course/view.php?id=254

2 Alg. de Horner: Polynomial evaluation

Consider

𝑝(𝑥) =
𝑛∑︁
𝑖=0

𝑎𝑖𝑥
𝑖

We wish to compute 𝑝(𝑘) for a given 𝑘 ∈ R minimizing the number of operations. Directly
computing 𝑎0 + 𝑎1𝑘1 + . . . leads to 𝑛 sums. The 𝑖th term requires computing 𝑘 𝑖, which means 𝑖
product operations, for a totall of

∑𝑛
𝑖=1 𝑖 =

𝑛(𝑛+1)
2 products. The total number of operations is then

Θ = 𝑛 + 𝑛(𝑛 + 1)/2

The associated complexity is O(𝑛2).

Horner’s method consists of re-writing 𝑝(𝑥) so that the number of products is reduced. One writes

𝑝(𝑥) = 𝑎0 + 𝑥𝑏0

where 𝑏𝑛−1 = 𝑎𝑛 and for 0 ≤ 𝑖 < 𝑛 − 1:

𝑏𝑖−1 = 𝑎𝑖 + 𝑥𝑏𝑖

Let 𝑝(𝑥) = 3 + 5𝑥 − 4𝑥2 + 0𝑥3 + 6𝑥4, giving 𝑛 = 4. Then 𝑏3 = 6 and

𝑏2 = 𝑎3 + 𝑥𝑏3 = 6𝑥, 𝑏1 = 𝑎2 + 𝑥𝑏2 = −4 + 𝑥(6𝑥),
𝑏0 = 𝑎1 + 𝑥𝑏1 = 5 + 𝑥(−4 + 𝑥(6𝑥))

This finally gives

𝑝(𝑥) = 3 + 𝑥𝑏0 = 3 + 𝑥(5 + 𝑥(−4 + 𝑥(6𝑥)))

Here, one must perform 𝑛 sums again but only 𝑛 products. Thus, there are Θ = 𝑛 + 𝑛 = 2𝑛
operations, giving a complexity of O(𝑛) (in the operation space). See the algorithm below:

2

input 𝑛; 𝑎𝑖, 𝑖 = 0, . . . , 𝑛; 𝑥
𝑏𝑛−1 ← 𝑎𝑛

for 𝑖 = 𝑛 − 2 to 𝑖 = 0
𝑏𝑖 = 𝑎𝑖+1 + 𝑥 ∗ 𝑏𝑖+1

od
𝑦 ← 𝑎0 + 𝑥 ∗ 𝑏0

return 𝑦

It is easy to see in this code that the for loop performs 𝑛−1 iterations, in each of which a single sum
and a single product are computed. The 𝑛th sum and 𝑛th product are performed in the computation
of 𝑦, the final result.

A more polished version includes the last computatoin (the one in the assignment of 𝑦) within the
loop and makes no use of indexes:

input 𝑛; 𝑎𝑖, 𝑖 = 0, . . . , 𝑛; 𝑥
𝑏 ← 𝑎𝑛

for 𝑖 = 𝑛 − 2 to 𝑖 = −1
𝑏 = 𝑎𝑖+1 + 𝑥 ∗ 𝑏

od
return 𝑏

In Python,

def horner(coefs, x):

n = len(coefs)-1

b = coefs[n]

for i in reversed(range(-1, n-1)):

b = coefs[i+1] + x*b

return b

It is trivial to adapt the code so that it returns the coefficients 𝑏0, . . . , 𝑏𝑛−1 and not the final result,
if needed.

3

3 Error

Let 𝑟, 𝑟 be two real numbers s.t. the latter is an approximation of the first. We define the error of
the approximation to be 𝑟 − 𝑟, and

Δ𝑟 = |𝑟 − 𝑟 | , 𝛿𝑟 =
Δ𝑟

|𝑟 |

With 𝑟 unknown the strategy is to work with a known bound of 𝑟.

4

4 Non-linear equations

The general problem is to find members of the set R 𝑓 of roots of 𝑓 ∈ R → R. The numerical
strategy is to iteratively approximate some 𝑟 ∈ R 𝑓 until some pre-established threshold in the error
of approximation is met.

More formally, the numerical strategy produces a sequence {𝑥𝑘 }𝑘∈N which satisfies

• lim𝑘→∞ {𝑥𝑘 } = 𝑟 for some 𝑟 ∈ R 𝑓

• Either 𝑒(𝑥𝑘) < 𝑒(𝑥𝑘−1) or, more strongly, lim𝑘→∞ 𝑒(𝑥𝑘) = 0, where 𝑒(𝑥𝑘) is some appropriate
measure of the error of approximation.

4.1 Bisection

A very simple procedure: if a root exists in [𝑎, 𝑏], it iteratively shrinks [𝑎, 𝑏] in halves (keeping the
halves which contain the root) until the interval is of sufficiently small length or the root is found.

Theorem 1 (Intermediate value). If 𝑓 is continuous in [𝑎, 𝑏] and 𝑓 (𝑎) 𝑓 (𝑏) < 0, then ∃𝑟 ∈ R 𝑓 s.t.
𝑟 ∈ [𝑎, 𝑏].

Assume 𝑓 is continuous. A root exists in [𝑎, 𝑏] if 𝑓 (𝑎) 𝑓 (𝑏) < 0 (Theorem 1). If that is the case,
the midpoint (𝑎 + 𝑏)/2 is taken as the approximation 𝑥0. It is also trivial to observe that 𝑥0 is at
most at a distance of (𝑏 − 𝑎)/2 from the real root, so 𝑒0 = |𝑥0 − 𝑟 | ≤ (𝑏 − 𝑎)/2.

If 𝑓 (𝑥0) = 0 the procedure must end because a root was found. Otherwise, sufficies to find which
half of the interval contains a root computing 𝑓 (𝑎) 𝑓 (𝑐) and, if needed, 𝑓 (𝑐) 𝑓 (𝑏).

The iterations may stop after reaching a maximum number of steps, when | 𝑓 (𝑐) | is sufficiently
close to zero, or when the error bound |𝑒𝑘 | ≤ (𝑏𝑘 − 𝑎𝑘)/2 (where [𝑎𝑘 , 𝑏𝑘] is the interval of this
iteration) is sufficiently small.

(!) The algorithm not always converges. Take 𝑓 (𝑥) = 1/𝑥. Clearly, it has no root. Yet setting
𝑎 = −1, 𝑏 = 1 in the initial iteration falsely passes the test. (The problem obviously is that 𝑓 is not
continuous in [−1, 1].) If one sets

5

Input : 𝑎, 𝑏, 𝛿, 𝑀, 𝑓

Output : Tupla de la forma: (𝑟, cota de error)
𝑓𝑎 ← 𝑓 (𝑎)
𝑓𝑏 ← 𝑓 (𝑏)

if 𝑓𝑎 ∗ 𝑓𝑏 > 0
return ?

fi

for 𝑖 = 1 to 𝑖 = 𝑀 do
𝑐 ← 𝑎 + (𝑏 − 𝑎)/2
𝑓𝑐 ← 𝑓 (𝑐)
if 𝑓𝑐 = 0 then

return (𝑐, 0)
fi

𝜖 =
𝑏 − 𝑎

2
if 𝜖 < 𝛿 then

break
fi
if 𝑓𝑎 ∗ 𝑓𝑐 < 0 then

𝑏 ← 𝑐

𝑓𝑏 = 𝑓 (𝑏)
else

𝑎 ← 𝑐

𝑓𝑎 = 𝑓 (𝑎)
fi

od
return (𝑐, 𝜖)

6

def bisection(f : callable, a : float, b : float, delta : float, M : int):

s, e = f(a), f(b) # function values at (s)tart, (e)nd of interval

if s*e > 0:

raise ValueError("Interval [a, b] contains no root.")

for i in range(M):

c = a + (b-a)/2

m = f(c) # value of f at (m)idpoint

if m == 0:

return c, 0

e = (b-a)/2

if e < delta:

return c, e

if s*m < 0:

b = c

e = f(b)

else:

a = c

s = f(a)

return c, e

7

Theorem 2. If {[𝑎𝑖, 𝑏𝑖]}∞𝑖=0 are the intervals generated by the bisection method on iterations
𝑖 = 0, 1, . . ., then:

1. lim𝑛→∞ 𝑎𝑛 = lim𝑛→∞ 𝑏𝑛 is a member of R 𝑓 .

2. If 𝑐𝑛 = 1
2 (𝑎𝑛 + 𝑏𝑛), 𝑟 = lim𝑛→∞ 𝑐𝑛, then |𝑟 − 𝑐𝑛 | ≤ 1

2𝑛+1 (𝑏0 − 𝑎0)

Proof. (1) It is clear that 𝑎𝑖 ≤ 𝑎𝑖+1 and 𝑏𝑖 ≥ 𝑏𝑖+1, since the interval on each iteration shrinks
in one direction.
∴ 𝑎𝑛, 𝑏𝑛 are monotonous.
But clearly 𝑎𝑛 is bounded by 𝑏0 and 𝑏𝑛 is bounded by 𝑎0.
∴ 𝑎𝑛, 𝑏𝑛 are monotonous and bounded.
∴ Their limits exist.
It is also clear that the interval shrinks to half its size on each iteration:

𝑏𝑛 − 𝑎𝑛 =
1
2
(𝑏𝑛−1 − 𝑎𝑛−1), 𝑛 ≥ 1 (1)

By recurrence on (1),

𝑏𝑛 − 𝑎𝑛 =
1
2𝑛
(𝑏0 − 𝑎0), 𝑛 ≥ 0 (2)

Then

lim
𝑛→∞

𝑎𝑛 − lim
𝑛→∞

𝑏𝑛 = lim
𝑛→∞
(𝑎𝑛 − 𝑏𝑛) = lim

𝑛→∞
1
2𝑛
(𝑏0 − 𝑎0) = 0 (3)

∴ lim𝑛→∞ 𝑎𝑛 = lim𝑛→∞ 𝑏𝑛.
Since the limit of 𝑎𝑛, 𝑏𝑛 exists and 𝑓 is by assumption continuous, the composition limit
theorem applies and:

lim
𝑛→∞
(𝑓 (𝑎𝑛) · 𝑓 (𝑏𝑛))

= lim
𝑛→∞

𝑓 (𝑎𝑛) · lim
𝑛→∞

𝑓 (𝑏𝑛) {Product of limits}

= 𝑓

(
lim
𝑛→∞

𝑎𝑛

)
· 𝑓

(
lim
𝑛→∞

𝑏𝑛

)
{Composition limit theorem}

= [𝑓 (𝑟)]2
{
𝑟 = lim

𝑛→∞
𝑎𝑛

}
(4)

The invariant of the algorithm is 𝑓 (𝑎𝑛) 𝑓 (𝑏𝑛) < 0. But due to the last result,

lim
𝑛→∞

𝑓 (𝑎𝑛) 𝑓 (𝑏𝑛) ≤ 0 ⇐⇒ [𝑓 (𝑟)]2 ≤ 0 ⇐⇒ 𝑓 (𝑟) = 0

∴ 𝑟 = lim𝑛→∞ 𝑎𝑛 = lim𝑛→∞ 𝑏𝑛 is a root.

8

(2) Follows directly from result (2)

|𝑟 − 𝑐𝑛 | =
����𝑟 − 1

2
(𝑏𝑛 − 𝑎𝑛)

����
≤
����12 (𝑏𝑛 − 𝑎𝑛)����

=

���� 1
2𝑛+1
(𝑏0 − 𝑎0)

���� {Result (2)}

9

4.2 Newton’s method

Assume 𝑟 ∈ R 𝑓 and 𝑟 = 𝑥 + ℎ, with 𝑥 an approximation of 𝑟 and ℎ its error. Assume 𝑓 ′′ exists and
is continuous in some 𝐼 around 𝑥 s.t. 𝑟 ∈ 𝐼. What we explained on Taylor expansions around a
point gives:

0 = 𝑓 (𝑟) = 𝑓 (𝑥 + ℎ) = 𝑓 (𝑥) + 𝑓 ′(𝑥)ℎ + O(ℎ2)

If 𝑥 is sufficiently close to 𝑟, ℎ is small and ℎ2 even smaller, so that O(ℎ2) is unconsiderable:

0 ≈ 𝑓 (𝑥) + ℎ 𝑓 ′(𝑥)

Therefore,

ℎ ≈ − 𝑓 (𝑥)
𝑓 ′(𝑥) (1)

From this follows that 𝑟 = 𝑥 + ℎ is approximated by

𝑟 ≈ 𝑥 − 𝑓 (𝑥)
𝑓 ′(𝑥)

Since the approximation in (5) truncated the terms of O(ℎ2) complexity, this new approximation
is closer to 𝑟 than 𝑥 originally was. In other words, 𝑥 − 𝑓 (𝑥)/ 𝑓 ′(𝑥) is a better approximation to 𝑟

than 𝑥 itself.

Thus, if 𝑥0 is an original approximation, we can define

𝑥𝑛+1 = 𝑥𝑛 −
𝑓 (𝑥𝑛)
𝑓 ′(𝑥𝑛)

(2)

to produce a sequence of approximations. This is the fundamental idea of Newton’s method.

10

Input: 𝑥0, 𝑀, 𝛿, 𝜖 ;
𝑣 ← 𝑓 (𝑥0)
if |𝑣 | < 𝜖 then return 𝑥0 fi
for 𝑘 = 1 to 𝑘 = 𝑀 do

𝑥1 ← 𝑥0 −
𝑣

𝑓 ′(𝑥0)
𝑣 ← 𝑓 (𝑥1)
if |𝑥1 − 𝑥0 | < 𝛿 ∨ 𝑣 < 𝜖 then

return 𝑥1

fi
𝑥0 ← 𝑥1

od
return 𝑥0

The predicate |𝑥1 − 𝑥0 | < 𝛿 checks whether our algorithm is adjusting 𝑥 in a negligible degree. If
that is the case, we should stop.

Theorem 3. If 𝑓 ′′ continuous around 𝑟 ∈ R 𝑓 and 𝑓 ′(𝑟) ≠ 0, then there is some 𝛿 > 0 s.t. if
|𝑟 − 𝑥0 | ≤ 𝛿, then:

• |𝑟 − 𝑥𝑛 | ≤ 𝛿 for all 𝑛 ≥ 1.

• {𝑥𝑛} converges to 𝑟

• The convergence is quadratic, i.e. there is a constant 𝑐(𝛿) and a natural 𝑁 s.t. |𝑟 − 𝑥𝑛+1 | ≤
𝑐 |𝑟 − 𝑥𝑛 |2 for all 𝑛 ≥ 𝑁 .

Proof. Let 𝑒𝑛 = 𝑟 − 𝑥𝑛 be the error in the 𝑛th approximation. Assume 𝑓 ′′ is continuous and
𝑓 (𝑟) = 0, 𝑓 ′(𝑟) ≠ 0. Then

𝑒𝑛+1 = 𝑟 − 𝑥𝑛+1

= 𝑟 −
(
𝑥𝑛 −

𝑓 (𝑥𝑛)
𝑓 ′(𝑥𝑛)

)
= 𝑟 − 𝑥𝑛 +

𝑓 (𝑥𝑛)
𝑓 ′(𝑥𝑛)

=
𝑒𝑛 𝑓

′(𝑥𝑛) + 𝑓 (𝑥𝑛)
𝑓 ′(𝑥𝑛)

(3)

Thus, the error at any given iteration is a function of the error at the previous iteration. Now
consider the expansion of 𝑓 (𝑟) as

11

𝑓 (𝑟) = 𝑓 (𝑥𝑛 − 𝑒𝑛) = 𝑓 (𝑥𝑛) + 𝑒𝑛 𝑓 ′(𝑥𝑛) +
𝑒2
𝑛 𝑓
′′(𝜁𝑛)
2

(4)

for 𝜁𝑛 between 𝑥𝑛 and 𝑟. This equation gives

𝑒𝑛 𝑓
′(𝑥𝑛) + 𝑓 (𝑥𝑛) = −

1
2
𝑓 ′′(𝜁𝑛)𝑒2

𝑛 (5)

The expression in (5) is the numerator in (3), whereby we obtain via substitution:

𝑒𝑛+1 = −1
2
𝑓 ′′(𝜁𝑛)𝑒2

𝑛

𝑓 ′(𝑥𝑛)
(6)

Equation (6) ensures that the error scales quadratically. Now we wish to bound the error
expression in (6). To bound 𝑒𝑛+1, we take 𝛿 > 0 to define a neighbourhood of length 𝛿 around
𝑟 . For any 𝑥 in this neighbourhood, (6) reaches its maximum when the numerator is maximized
and the denominator is minimized:

𝑐(𝛿) = 1
2

max |𝑥−𝑟 | ≤ 𝛿 | 𝑓 ′′(𝑥) |
min |𝑥−𝑟 | ≤ 𝛿 | 𝑓 ′ (𝑥) |

In other words, 𝑐(𝛿) is the maximum value which 𝑒𝑛+1 can take if 𝜁𝑛, 𝑥𝑛 are assumed to belong
to the neighbourhood. Now we make two assumptions:

1. 𝑥0 belongs to the neighbourhood, i.e. |𝑥0 − 𝑟 | ≤ 𝛿

2. 𝛿 is sufficiently small so that 𝜚 := 𝛿𝑐(𝛿) < 1.

Note that, since 𝜁0 is between 𝑥0 and 𝑟 , assumption (1) ensures that 𝜁0 is also in the neighbour-
hood, i.e. |𝑟 − 𝜁0 | ≤ 𝛿. Then we have:

|𝑒0 | =
1
2
| 𝑓 ′′(𝜁0)/ 𝑓 ′(𝑥0) | ≤ 𝑐(𝛿)

Then:

|𝑥1 − 𝑟 | = |𝑒1 |

=

����𝑒2
0 ·

1
2
𝑓 ′′(𝜁0)/ 𝑓 ′(𝑥0)

����
≤ |𝑒2

0 |𝑐(𝛿)
{

1
2
𝑓 ′′(𝜁0)/ 𝑓 ′(𝑥0) ≤ 𝑐(𝛿)

}
≤ |𝑒0 |𝛿𝑐(𝛿) {|𝑒0 | ≤ 𝛿}
= |𝑒0 | 𝜚 {𝜚 = 𝛿𝑐(𝛿)}
< |𝑒0 | {𝜚 < 1}
≤ 𝛿

∴ |𝑒1 | < |𝑒0 | ≤ 𝛿, which means the error decreases. This argument may be repeated inductively,
giving:

12

𝑒1	≤ 𝜚	𝑒0		
𝑒2	≤ 𝜚	𝑒1	≤ 𝜚2	𝑒0
𝑒3	≤ 𝜚	𝑒2	≤ 𝜚3	𝑒0
...

In general, |𝑒𝑛 | ≤ 𝜚𝑛 |𝑒0 |. And since 0 ≤ 𝜚 < 1, we have 𝜚𝑛 → 0 when 𝑛→∞, entailing that
|𝑒𝑛 | → 0 when 𝑛→∞.

Theorem 4. If 𝑓 ′′ is continuous in R, and if 𝑓 is increasing, convex, and has a root, then said root
is unique and Newton’s method converges to it from any starting point.

Recall that 𝑓 is convex if 𝑓 ′′(𝑥) > 0 for all 𝑥. Graphically, it is convex if the line connecting two
arbitrary points of 𝑓 lies above the curve of 𝑓 between those two points.

4.3 Secant method

In Netwon’s method,

𝑥𝑛+1 = 𝑥𝑛 −
𝑓 (𝑥𝑛)
𝑓 ′(𝑥𝑛)

The function of interest is 𝑓 . We cannot escape computing 𝑓 (𝑥𝑛), but it would be desirable to avoid
the computation of 𝑓 ′(𝑥𝑛), which may potentially be expensive. Since

𝑓 ′(𝑥) = lim
ℎ→𝑥

𝑓 (𝑥) − 𝑓 (ℎ)
𝑥 − ℎ

it is natural to suggest

𝑓 ′(𝑥𝑛) ≈
𝑓 (𝑥𝑛) − 𝑓 (𝑥𝑛−1)

𝑥𝑛 − 𝑥𝑛−1
(1)

Graphically, this means we are not using the line tangent to the point (𝑥𝑛, 𝑓 (𝑥𝑛)) but the line secant
to the points (𝑥𝑛, 𝑓 (𝑥𝑛) and (𝑥𝑛−1, 𝑓 (𝑥𝑛−1)). The point 𝑥𝑛+1 is then the value of 𝑥 where this secant
line has a root.

13

4.4 Fixed point iteration

The key observation is this: if 𝑟 ∈ R 𝑓 , then 𝑔(𝑥) = 𝑥 − 𝑘 𝑓 (𝑥) has 𝑟 as fixed point, for any 𝑘 ∈ R.
Inversely, if 𝑔 has a fixed point in 𝑟, then 𝑟 ∈ R 𝑓 .

Theorem 5. (1) Let 𝑔 ∈ 𝐶 [𝑎, 𝑏] and assume 𝑔(𝑥) ∈ [𝑎, 𝑏] for all 𝑥 ∈ [𝑎, 𝑏]. Then there is a fixed
point of 𝑔 in [𝑎, 𝑏].

(2) If, on top of previous conditions, 𝑔 is differentiable in (𝑎, 𝑏) and there is some 𝑘 < 1 s.t.
|𝑔′(𝑥) | ≤ 𝑘 for all 𝑥 ∈ (𝑎, 𝑏), then the fixed point referred in (1) is unique.

Theorem 6 (Mean value theorem). Let 𝑓 : [𝑎, 𝑏] → R continuous and differentiable on (𝑎, 𝑏)
with 𝑎 < 𝑏. Then there is some 𝑐 ∈ (𝑎, 𝑏) s.t.

𝑓 ′(𝑐) = 𝑓 (𝑏) − 𝑓 (𝑎)
𝑏 − 𝑎

The interpretation is simple: consider the line secant to 𝑓 on 𝑎, 𝑏. The theorem ensures that there
is some point 𝑐 s.t. the line tangent to 𝑐 is parallelt to said secant (equal slopes).

Proof. (1) If 𝑎 or 𝑏 are fixed points the proof is done so assume otherwise. Since 𝑔(𝑥) ∈ [𝑎, 𝑏],
we have 𝑔(𝑎) > 𝑎 and 𝑔(𝑏) < 𝑏.
Take 𝜑(𝑥) = 𝑔(𝑥) − 𝑥, which is continuous and defined in [𝑎, 𝑏]. Then

𝜑(𝑎) = 𝑔(𝑎) − 𝑎 > 0, 𝜑(𝑏) = 𝑔(𝑏) − 𝑏 < 0

Then 𝜑(𝑎)𝜑(𝑏) < 0. Then, by the intermediate value theorem, 𝜑 has a root in (𝑎, 𝑏). In
otherwords, there is at least one 𝑝 s.t.

𝜑(𝑝) = 𝑔(𝑝) − 𝑝 = 0

∴ 𝑔(𝑝) = 𝑝 is a fixed point of 𝑔.
(2) Assume two distinct fixed points 𝑝, 𝑞 exist in [𝑎, 𝑏]. The mean value theorem ensures the
existence of some 𝜁 between 𝑝, 𝑞 (and thus in [𝑎, 𝑏]) s.t.t

𝑔′(𝜁) = 𝑔(𝑎) − 𝑔(𝑏)
𝑎 − 𝑏

⇐⇒ 𝑔′(𝜁) (𝑎 − 𝑏) = 𝑔(𝑎) − 𝑔(𝑏) (1)

By hypothesis, |𝑔′(𝑥) | ≤ 𝑘 < 1. Since 𝑝, 𝑞 are assumed to be fixed points, equation (1) gives:

|𝑝 − 𝑞 | = |𝑔(𝑝) − 𝑔(𝑞) |
= |𝑔′(𝜁) | |𝑝 − 𝑞 |
≤ 𝑘 |𝑝 − 𝑞 | < |𝑝 − 𝑞 |

14

But this is absurd. The contradiction arises from assuming 𝑝, 𝑞 to be distinct. Therefore, the
fixed point is unique.

The fixed point algorithm begins with an approximation 𝑝0. Then,

𝑝𝑛 = 𝑔(𝑝𝑛−1)

If 𝑔 continuous and the sequence converges, then it converges to a fixed point, since:

𝑝 := lim
𝑛→∞

𝑝𝑛 = lim
𝑛→∞

𝑔(𝑝𝑛−1) = 𝑔

(
lim
𝑛→∞

𝑝𝑛−1

)
= 𝑔(𝑝)

Input: 𝑝, 𝑀, 𝛿

𝑝previous = 𝑝

for 𝑖 = 1 to 𝑖 = 𝑀 do
𝑝 ← 𝑔(𝑝)
if

��𝑝 − 𝑝previous
�� < 𝛿 then

return 𝑝

fi
𝑝previous = 𝑝

od
return 𝑝

Theorem 7. Let 𝑔 ∈ 𝐶 [𝑎, 𝑏] be a self-map of [𝑎, 𝑏] differentiable in (𝑎, 𝑏). Assume there is a
constant 0 < 𝑘 < 1 s.t. |𝑔′(𝑥) | ≤ 𝑘 for all 𝑥 ∈ (𝑎, 𝑏).

For all 𝑝0 ∈ [𝑎, 𝑏], the sequence 𝑝𝑛 = 𝑔(𝑝𝑛−1) converges to the unique f ixed point 𝑝 in (𝑎, 𝑏).

Proof. The mean value theorem ensures that

|𝑝𝑛 − 𝑝 | = |𝑔(𝑝𝑛−1) − 𝑔(𝑝) |
= |𝑔′(𝜁𝑛) | | (𝑝𝑛−1 − 𝑝) |
≤ 𝑘 |𝑝𝑛−1 − 𝑝 |

with 𝜁𝑛 ∈ (𝑎, 𝑏). More succintly, with 𝑒𝑛 := 𝑝𝑛 − 𝑝,

|𝑒𝑛 | ≤ 𝑘 |𝑒𝑛−1 | ≤ 𝑘 |𝑒𝑛−2 | ≤ . . . ≤ 𝑘 |𝑒0 |

By recurrence,

15

|𝑒𝑛 | ≤ 𝑘𝑛 |𝑒0 |

Since 0 < 𝑘 < 1, 𝑘𝑛 → 0 when 𝑛 → ∞, which entails |𝑒𝑛 | → 0 when 𝑛 → ∞. It follows that
{𝑝𝑛} → 𝑝 when 𝑛→∞.

Now let us consider the error of this method. Take 𝑝𝑛 = 𝑝 + 𝑒𝑛 and consider the Taylor expanssion
of 𝑔 around 𝑝 evaluated at 𝑝𝑛 = 𝑝 + 𝑒𝑛:

𝑔(𝑝𝑛) = 𝑔(𝑝 + 𝑒𝑛) =
𝑚−1∑︁
𝑖=1

𝑔(𝑖) (𝑝)
𝑖!

𝑒𝑖𝑛 +
𝑓 (𝑚) (𝜁𝑛)
(𝑛 + 1)! 𝑒

𝑚
𝑛 (2)

See that in (2), 𝑛 corresponds to the iteration we are dealing with, and thus 𝜁𝑛 and 𝑒𝑛 depend on it.
On the contrary, 𝑚 is the degree to which we expand the series of 𝑔 around 𝑝 evaluated at 𝑝𝑛. We
also assume that 𝜁𝑛 lies between 𝑝𝑛 and 𝑝.

By definition, 𝑔(𝑝𝑛) = 𝑝𝑛+1 so (2) is nothing but an expression for this value. Assume 𝑔(𝑘) (𝑝) = 0
for 𝑘 = 1, 2, . . . , 𝑚 − 1, but 𝑔(𝑚) (𝑝) ≠ 0. Then

𝑒𝑛+1 = 𝑝𝑛+1 − 𝑝

= 𝑔(𝑝𝑛) − 𝑔(𝑝)

=
𝑔(𝑚) (𝜁𝑛)

𝑚!
𝑒𝑚𝑛

More succintly,

𝑒𝑛+1 =
𝑔(𝑚) (𝜁𝑛)

𝑚!
𝑒𝑚𝑛

Then

lim
𝑛→∞

����𝑒𝑛+1𝑒𝑚𝑛

���� = |𝑔𝑚 (𝑝) |𝑚!

which is a constant. In conclusion, if the derivatives of 𝑔 are null in 𝑝 up to the order 𝑚 − 1, the
method as an order of convergence of at least 𝑚. Three results follow from this fact.

16

5 P2

(1) Let 𝑓 (𝑥) = (𝑥 + 2) (𝑥 + 1)2𝑥(𝑥 − 1)3(𝑥 − 2). To which root does the biscection method converge
on the following intervals?

[−1.5, 2.5], [−0.5, 2.4], [−0.5, 3], [−3,−0.5]

(𝑎) The midpoint of 𝐼0 = [−1.5, 2.5] is 𝑐0 := (2.5 − 1.5)/2 = 1/2. Since 𝑓 (𝑎) 𝑓 (𝑐) < 0, we have
𝐼1 = [−1.5, 0.5]. The midpoint of 𝐼1 is 𝑐1 = −0.5, so 𝐼2 will be [−0.5, 0.5]. The only root in this
interval is 𝑟 = 0, so the algorithm converges to it.

(𝑏) The midpoint of 𝐼0 = [−0.5, 2.4] is 𝑐 := (2.4 − 0.5)/2 = 0.95. Then 𝐼1 = [−1.5, 0.95]. Same
logic gives 𝑐1 = −0.725 and then 𝐼2 = [−0.725, 0.95]. The only root here is zero again.

(𝑐, 𝑑) Same.

17

(2) We wish to find a root of 𝑓 in [𝑎, 𝑏] using bisection method and ensuring that the error is not
greater than 𝜖 ∈ R+.

(𝑎) Estimate the number of iterations sufficient to meet the criterion.

(𝑏) What is the number of iterations for 𝑎 = 0, 𝑏 = 1, 𝜖 = 10−5?

Let 𝑒𝑛 = 𝑥𝑛 − 𝑟. It is trivial to note that |𝑒𝑛 | ≤ 𝑏𝑛−𝑎𝑛
2 . Furthermore, the length of 𝐼1 is half the

length of 𝐼0, that of 𝐼2 is half that of 𝐼1, etc. In other words,

|𝑒0 | ≤
𝑏 − 𝑎

2
, |𝑒1 | ≤

𝑏 − 𝑎
22 , |𝑒2 | ≤

𝑏 − 𝑎
23 , . . .

In general,

|𝑒𝑛 | ≤
𝑏 − 𝑎
2𝑛+1

Imposing

|𝑒𝑛 | ≤
𝑏 − 𝑎
2𝑛+1

≤ 𝜖

we satisfy our criterion, but we wish to express this bound in terms of 𝑛. Now, clearly,

𝑏 − 𝑎
2𝑛+1

≤ 𝜖

⇐⇒ 𝑏 − 𝑎
𝜖
≤ 2𝑛+1

⇐⇒ log2

(
𝑏 − 𝑎
𝜖

)
− 1 ≤ 𝑛

⇐= log2

(
𝑏 − 𝑎
𝜖

)
≤ 𝑛

⇐⇒
ln

(
𝑏−𝑎
𝜖

)
ln 2

≤ 𝑛

which is our final answer.

(𝑏) For 𝑎 = 0, 𝑏 = 1, 𝜖 = 10−5, we need

18

𝑛 ≥
ln

(
1

10−5

)
ln 2

≈ 16.609

so 𝑛 = 17 would suffice.

19

(3) Determine graphically some root of 𝑓 (𝑥) = 4 sin 𝑥 + 1 − 𝑥 and perform three iterations of the
bisection method to approximate. How many steps are needed to ensure an error less than 10−3?

Let us unveil the full power of LaTex:

−6 −4 −2 2 4 6

−5

5

10

𝑥

𝑓 (𝑥)

𝑓 (𝑥) = 4 sin(𝑥) + 1 − 𝑥

I’m too lazy to perform the steps of the algorithm. The number of steps needed again are given by

𝑛 ≥
ln

(
4−2
10−3

)
ln 2

≈ 10.96

so taking 𝑛 = 11 suffices.

20

(4) Let 𝑎 > 0. Computing
√
𝑎 is equivalent to finding the root of 𝑓 (𝑥) = 𝑥2 − 𝑎.

(𝑎) Show that Newton’s sequence for this case is

𝑥𝑛+1 =
1
2

(
𝑥𝑛 +

𝑎

𝑥𝑛

)
(𝑏) Prove that f or any 𝑥0 > 0, the approximations {𝑥𝑛} satisfy 𝑥𝑛 ≥

√
𝑎 for 𝑛 ≥ 1.

(𝑐) Prove {𝑥𝑛} is sdecreasing.

(𝑑) Conclude that the sequence converges to
√
𝑎

(𝑎) In Newton’s algorithm,

𝑥𝑛+1 = 𝑥𝑛 −
𝑓 (𝑥𝑛)
𝑓 ′(𝑥𝑛)

Clearly,

𝑓 ′(𝑥) = 𝑑

𝑑𝑥
(𝑥2 − 𝑎) = 2𝑥

Therefore,

𝑥𝑛+1 = 𝑥𝑛 −
𝑥2
𝑛 − 𝑎
2𝑥𝑛

= 𝑥𝑛 −
1
2

(
𝑥𝑛 −

𝑎

𝑥𝑛

)
=

1
2
𝑥𝑛 +

1
2
𝑎

𝑥𝑛

=
1
2

(
𝑥𝑛 +

𝑎

𝑥𝑛

)
■

(𝑏) Let 𝑥0 > 0. Recall that, among all Pythagorean means, the arithmetic mean is the greatest,
asuming positively-valued vectors. In particular, it is greater or equal to the geometric mean:

1
𝑁

𝑛∑︁
𝑖=1

𝑦𝑖 ≥ 𝑛

√√
𝑛∏
𝑖=1

𝑦𝑖

21

for any set of points 𝑦1, . . . , 𝑦𝑛 all positive. In particular,

𝑥𝑛+1 =
1
2

(
𝑥𝑛 +

𝑎

𝑥𝑛

)
≥
√︂
𝑥𝑛

𝑎

𝑥𝑛
=
√
𝑎 ■

(𝑐)

1
2

(
𝑥𝑛 +

𝑎

𝑥𝑛

)
≤ 𝑥𝑛

⇐⇒ 𝑥𝑛 +
𝑎

𝑥𝑛
≤ 2𝑥𝑛

⇐⇒ 𝑎

𝑥𝑛
≤ 𝑥𝑛

⇐⇒ 𝑎 ≤ 𝑥2
𝑛

⇐⇒
√
𝑎 ≤ 𝑥𝑛

which is true due to point (𝑏).

(𝑑) Let 𝑒𝑛 = 𝑥𝑛 −
√
𝑎. We have shown {𝑥𝑛} to be decreasing and bounded below by

√
𝑎. Therefore,

it converges to a limit 𝐿 (with 𝐿 the infimum of {𝑥𝑛}). Then

lim
𝑛→∞

𝑥𝑛 =
1
2

lim
𝑛→∞

(
𝑥𝑛−1 +

𝑎

𝑥𝑛−1

)
=

1
2
𝐿 + 𝑎

2𝐿

This induces the equation

𝐿 =
𝐿

2
+ 𝑎

2𝐿
⇐⇒ 𝐿

2
=

𝑎

2𝐿
⇐⇒ 𝐿2 = 𝑎

⇐⇒ 𝐿 =
√
𝑎 ■

22

(5) Propose an iteration formula to approximate 1√
𝑎

, with 𝑎 > 0, using Newton’s method. Decide
the number of iterations needed so that the relative error in the approximation is less than 10−4

when starting from 𝑥0 = 1 and taking 𝑎 = 5.

Error: 𝑒𝑛 = 𝑟 − 𝑥𝑛, quadratitc, i.e. |𝑟 − 𝑥𝑛+1 | ≤ 𝑐 |𝑟 − 𝑥𝑛 |2.

(𝑎. Iteration formula) Let 𝑎 > 0 and assume we wish to approximate 1/
√
𝑎. Let 𝜑 = 1

𝑎
, so that

1√
𝑎
=
√
𝜑. We see that we can express the problem of finding the reciprocal of a root in terms of a

simple root.

We know from the previous excercise that the iteration formula for √𝜑 is

𝑥𝑛+1 =
1
2

(
𝑥𝑛 +

𝜑

𝑥𝑛

)
Now take 𝑥0 = 1 and 𝑎 = 5, so that 𝜑 = 1

5 . The relative error of approximation on iteration 𝑛 is

𝑒𝑛 =

���𝑥𝑛 − 1√
5

���
√

5

Brute-forcing allows us to see that 𝑥0, 𝑥1, 𝑥2, 𝑥3 do not meet the criterion, but

𝑥4 = 0.4472137791286728 (jaja)

has 𝑒4 < 10−4.

23

(6) Propose an iteration formula for 3√
𝑅 where 𝑅 > 0. Plot the function to see where the procedure

converges.

Observe that finding 3√
𝑅 is equivalent to finding a root of 𝑓 (𝑥) = 𝑥3 − 𝑅.

−3 −2 −1 1 2 3

−20

20

𝑥

𝑓 (𝑥)
𝑓 (𝑥) = 𝑥3

But 𝑓 (𝑥) is simply a vertical displacement of 𝑥3, so 𝑑
𝑑𝑥
𝑥3 = 𝑑

𝑑𝑥
𝑓 (𝑥) (which holds algebraically).

In particular, the derivative of 𝑥3 approaches 0 as 𝑥 → 0, meaning that Newton’s method will fail
to converge for intervals of length 𝐿 around 0 (with 𝐿 unspecified). The graph suggests that an
appropriate value for 𝐿 is 1.

That said, since 𝑑
𝑑𝑥
𝑓 (𝑥) = 𝑑

𝑑𝑥
𝑥3 (in other words, since the derivative of the function is independent

of 𝑅), and 𝑑
𝑑𝑥
𝑥3 = 3𝑥2, we propose

𝑥𝑛+1 = 𝑥𝑛 −
𝑥3
𝑛

3𝑥2
𝑛

= 𝑥𝑛 −
𝑥𝑛

3
=

2𝑥𝑛
3

24

(7) (𝑎) Utilizando el teorema del valor intermedio, demostrar que 𝑔(𝑥) = arctan(𝑥) − 2𝑥
1+𝑥2 tiene

raı́z 𝛼 ∈ [1,
√

3].

(𝑏) Then show that if {𝑥𝑛} is the sequence generated by Newton’s method for 𝑓 (𝑥) = arctan(𝑥),
with 𝑥0 = 𝛼, it is the case that 𝑥𝑛 = (−1)𝑛𝛼.

(𝑎) It is known that arctan 𝑥 is continuous in R. Since 1 + 𝑥2 > 0 for all 𝑥, 2𝑥/(1 + 𝑥2) is also
continuous in R. ∴ 𝑔 is continuous in R. And it is easy to verify as well that 𝑔(1)𝑔(

√
3) < 0.

∴ By virtue of the intermediate value theorem, there is a root 𝛼 of 𝑔 in [1,
√

3].

(𝑏) Let 𝑔1(𝑥) = arctan 𝑥, 𝑔2(𝑥) = 2𝑥
1+𝑥2 , so that 𝑔 = 𝑔1−𝑔2. Since𝛼 > 0, we have 𝑔1(𝛼) > 0, 𝑔2(𝛼) >

0. And since 𝑔(𝛼) = 0 if and only if 𝑔1(𝛼) − 𝑔2(𝛼) = 0, we conclude that 𝑔1(𝛼) = 𝑔2(𝛼). In other
words,

arctan𝛼 =
2𝛼

1 + 𝛼2 (1)

Since the derivative of arctan 𝑥 is 1/(1 + 𝑥2), equation (1) may be expressed as follows:

arctan𝛼 = 2𝛼 arctan′(𝛼) (2)

This entails that

arctan′ 𝛼 =
arctan𝛼

2𝛼
(3)

Now take 𝑥0 = 𝛼 and consider Newton’s sequence for 𝑓 (𝑥) = arctan 𝑥 = 𝑔1(𝑥). Clearly,

𝑥1 = 𝛼 − 𝑓 (𝛼)
𝑓 ′(𝛼)

= 𝛼 − arctan𝛼 × 2𝛼
arctan𝛼

{Eq. (3)}

= 𝛼 − 2𝛼
= −𝛼

Same logic gives 𝑥2 = 𝛼, 𝑥3 = −𝛼, . . . and the result should be easy to generalize.

25

(8) Consider for the fixed-point iteration the following functions, whose least positive root we wish
to find:

𝜙(𝑥) = 𝑥3 − 𝑥 − 1, 𝜓(𝑥) = 2𝑥 − tan 𝑥, 𝜑(𝑥) = exp(−𝑥) − cos 𝑥

Find an iteration function and an interval which guarantees the method’s convergence.

(𝜙) Let us analyize 𝜙 in order to ascertain where its roots are.

Consider that 𝜙′(𝑥) = 3𝑥2 − 1, which means 𝜙′ has roots wherever 3𝑥2 = 1, which holds if and
only if 𝑥2 = 1

3 , or equivalently 𝑥 = ±
√

3
3 . Furthermore, 𝜙′(𝑥) < 0 in the region (−

√
3/3,
√

3/3) and
𝜙′(𝑥) > 0 elsewhere. In conclusion, 𝜙 is decreasing in (−

√
3/3,
√

3/3) and increasing everywhere
else.

Now, observe that 𝜙
(√

3/3
)
< 0. Combined with the fact that 𝜙 is increasing in (

√
3/3,∞), this

means there is a root of 𝜙 in this interval. (Note that 𝜙 is a polynomial without asymptotic behavior.)
Furthermore, 𝜙

(
−
√

3/3
)
< 0. Again, this means there is no root in (∞,

√
3/3).

∴ 𝜙 has one and only one root and it belongs to (
√

3/3,∞).

Now, suffices to note that 𝑓 (1.3)𝑖 < 0, 𝑓 (1.4) > 0, and the intermediate value theorem ensures that
there is a root in (1.3, 1.4). ∴ The only root of 𝜙 lies within (1.3, 1.4).

Now, we need only propose a function 𝑓 s.t. 𝑟 is a fixed-point of 𝑓 and 𝑓 (𝑥) ∈ (1.3, 1.4) for all
𝑥 ∈ (1.3, 1.4). Consider that

𝜙(𝑥) = 0 ⇐⇒ 𝑥3 = 𝑥 + 1 ⇐⇒ 𝑥 =
3√
𝑥 + 1 (4)

So letting 𝑓 (𝑥) := 3√
𝑥 + 1 ensures that the fixed point of 𝑓 is the root of 𝜙. Furthermore,

𝑓 (1.3) ≈ 1.32, 𝑓 (1.4) ≈ 1.33. Now,

𝑓 ′(𝑥) = 1
3
√︁
(𝑥 + 1)2

Since 𝑓 ′(𝑥) > 0 (as is simple to note), we know 𝑓 is increasing, which means all 𝑓 (𝑥) ∈ (1.32, 1.33)
for 𝑥 ∈ [1.3, 1.4]. Furthermore, 𝑓 ′(𝑥) ∈ (0, 1) and 𝑓 ′(𝑥) is clearly decreasing. This means that in
[1.3, 1.4], 𝑓 ′ has its maximum at 𝑓 ′(1.4) ≈ 0.573. In other words, if we let 𝑘 = 0.573, we know
|𝑔′(𝑥) | = 𝑔′(𝑥) < 𝑘 for all 𝑥 ∈ [1.3, 1.4].

26

∴ 𝑓 is a self-map of [1.3, 1.4], differentiable in (1.3, 1.4), and there is a constant 𝑘 ∈ (0, 1) s.t.
|𝑔′(𝑥) | < 𝑘 for all 𝑥 ∈ (1.3, 1.4)—where incidentally this constant is 𝑔′(1.3).]

∴ By virtue of Theorem 7, the fixed-point algorithm will converge to the unique root 𝑟 ∈ (1.3, 1.4)
if using the iteration function 𝑓 (𝑥) = 3√

𝑥 + 1 and the interval [1.3, 1.4].

27

(𝜓) Let 𝜓(𝑥) = 2𝑥 − tan 𝑥. A root exists for 𝜓(𝑥) whenever

𝑥 =
tan 𝑥

2
=

2 sin 𝑥
cos 𝑥

So we may define 𝑔(𝑥) := tan 𝑥/2 guarantying that any fixed point of 𝑔 is a root of 𝜓. Now, tan 0 = 0
entails that 𝑔(0) = 0. Furthermore, 𝑔(𝜋/4) = 1/2. Since 𝑔′(𝑥) = sec2(𝑥)/2 is strictly positive, 𝑔 is
strictly increasing and this means for 𝑥 ∈ [0, 𝜋4] we have 𝑔(𝑥) ∈ [0, 1/2] ⊆ [0, 𝜋4].

∴ 𝑔 is a self-map in [0, 𝜋/4].

∴ There is a fixed-point of 𝑔 in [0, 𝜋/4].

Consider now 𝑔′(𝑥) = 1
2 sec2(𝑥) = 1

2 cos2 𝑥
. This is clearly bounded in (0, 1]. To be more precise, it is

geometrically obvious that, for all 𝑥 ∈ [0, 𝜋/4],
√

2/2 ≤ cos 𝑥 ≤ 1, which means 1/2 ≤ cos2 𝑥 ≤ 1.
In particular, 𝑔′(𝑥) reaches its maximum when cos2 𝑥 reaches its minimum, so 𝑔′(𝑥) reaches its
maximum at 𝑥 = 𝜋

4 :

𝑔′(𝜋/4) = 1
2 cos2 𝜋

4
=

1
2 · 1/2 = 1

It follows that there is some constant 𝑘 ∈ (0, 1) such that |𝑔′(𝑥) | ≤ 𝑘 for all 𝑥 ∈ (0, 𝜋/4).

∴ There is a unique fixed point of 𝑔 in [0, 𝜋/4].

∴ There is a unique root of 𝜓(𝑥) in [0, 𝜋/4] and the iteration method converges to it using this
interval and the iteration function 𝑔.

28

(𝜑) Consider 𝜑(𝑥) = exp(−𝑥) − cos 𝑥. This function is zero if and only if 𝑒−𝑥 = cos 𝑥, which may
be expressed as 𝑥 = − ln (cos 𝑥). In other words, the roots of 𝜑 correspond to the fixed points of
𝑓 (𝑥) = − ln(cos 𝑥).

Now, −1 ≤ cos 𝑥 ≤ 1 but ln is defined only in R+. From this follows that 𝑓 is defined only when
cos 𝑥 > 0, i.e. in the right-hand half of the unite circle. This corresponds to values of 𝑥 in [0, 𝜋/2)
or (3𝜋/2, 2𝜋] (extended by any factor 2𝜋𝑘 , 𝑘 ∈ Z).

Take 𝐼 := [0, 𝜋/4] ⊆ Dom(𝑓). See that 𝑓 (0) = − ln(1) = 0 and 𝑓 (𝜋/4) = − ln(
√

2/2) ≈ 0.346 <

𝜋/4. Furthermore, with 𝑢 = cos 𝑥,

𝑑𝑓

𝑑𝑥
= − 𝑑

𝑑𝑢
ln(𝑢) × 𝑑

𝑑𝑥
cos 𝑥 =

sin 𝑥
cos 𝑥

= tan 𝑥

which is strictly positive in [0, 𝜋/4]. This suffices to prove that 𝑓 (𝑥) ∈ [0, 𝜋/4] for all 𝑥 ∈ [0, 𝜋/4].

∴ 𝑓 is a self-map of [0, 𝜋/4].

∴ There is a fixed point of 𝑓 in [0, 𝜋/4].

Now, tan 𝑥 is increasing in [0, 𝜋/4] and, in particular, tan 0 = 0, tan 𝜋
4 = 1. This suffices to show

that |𝑔′(𝑥) | < 1 for all 𝑥 ∈ (0, 𝜋/4).

∴ There is a unique fixed point of 𝑓 in [0, 𝜋/4] and the fixed point iteration algorithm converges to
it when starting from said interval with 𝑓 as iteration function.

29

(10) Let 𝑥𝑛+1 = 2𝑥𝑛−1 the formula used to solve 2𝑥 = 2𝑥 . What interval should be chosen to ensure
{𝑥𝑛} is convergent? Calculate its limit.

The fixed-point algorithm uses the formula 𝑝𝑛 = 𝑔(𝑝𝑛−1) where 𝑔 is a function s.t. the fixed
points of 𝑔 are roots of some original function of interest 𝑓 . In this case, clearly 𝑔(𝑥) = 2𝑥−1. To
ensure convergence, we must find an interval 𝐼 s.t. 𝑔 is a self-map of 𝐼 and 𝑔′ lies within a unit
neighbourhood of 0.

Now, clearly the equation 2𝑥 = 2𝑥 has solutions 𝑥 = 1, 𝑥 = 2, and no other. So whatever self-map 𝐼

we build must contain either 1 or 2. So take 𝐼 = [0, 1].

Clearly, if 𝑥 ∈ 𝐼, then −1 ≤ 𝑥 − 1 ≤ 0. This means 2𝑥−1 has exponent at least −1, when
𝑔(0) = 2−1 = 1

2 . Furthermore, 2𝑥−1 has exponent at most 0, when 𝑔(1) = 20 = 1. This suffices to
show that 𝑔(𝑥) ∈ 𝐼 for all 𝑥 ∈ 𝐼.

Now,

𝑑

𝑑𝑥
2𝑥−1 =

𝑑

𝑑𝑢
2𝑢 × 𝑑

𝑑𝑥
(𝑥 − 1) = 2𝑢 ln 𝑢

In short, 𝑔′(𝑥) = 2𝑥−1 ln(2). For 𝑥 ∈ [0, 1], we have already established that 0 ≤ 2𝑥−1 ≤ 1.
Therefore, 0 ≤ 𝑔′(𝑥) ≤ ln(2) < 0 for all 𝑥 ∈ [0, 1]. In other words, 𝑔′ lies within a unit-distance
of zero when its domain is restricted to 𝐼.

∴ The algorithm converges to the unique solution of 2𝑥 = 2𝑥 in [0, 1] (which is 1) when starting
from said interval with iteration function 𝑔.

30

(11) Suppose {𝑥𝑛} converges to 𝑟 and that 𝑥𝑛+1 = 𝑔(𝑥𝑛) where |𝑔(𝑦) − 𝑔(𝑥) | ≤ 𝜆 |𝑦 − 𝑥 | for all
𝑥, 𝑦 with 𝜆 ∈ (0, 1). Determine the error bound on each iteration as a function of the difference
between the last two iteration values. In other words, find 𝐶 s.t.

|𝑥𝑛+1 − 𝑟 | ≤ 𝐶 |𝑥𝑛+1 − 𝑥𝑛 |

Recall that 𝑥𝑛+1 = 𝑔(𝑥𝑛). This means

|𝑥𝑛+1 − 𝑟 | = |𝑔(𝑥𝑛) − 𝑟 |

But 𝑟 is a fixed-point of 𝑔, i.e. 𝑟 = 𝑔(𝑟). Then

|𝑔(𝑥𝑛) − 𝑟 | = |𝑔(𝑥𝑛) − 𝑔(𝑟) |

By assumption, then,

|𝑥𝑛+1 − 𝑟 | = |𝑔(𝑥𝑛) − 𝑔(𝑟) |
≤ 𝜆 |𝑥𝑛 − 𝑟 |

Recall that |𝑒𝑛 | = |𝑥𝑛 − 𝑟 | ≤ 𝑘𝑛 |𝑒𝑛−1 | for some 𝑘 ∈ (0, 1). Since the property above holds for any
𝜆 ∈ (0, 1), it holds for said 𝑘 .

Since |𝑥𝑛 − 𝑟 | ≤ 𝑘𝑛 |𝑒𝑛−1 |, and 𝑘𝑛 ∈ (0, 1) entails 𝑘𝑛 |𝑒𝑛−1 | < |𝑒𝑛−1 |, we have |𝑥𝑛 − 𝑟 | < |𝑥𝑛−1 − 𝑟 |.
In other words, successive approximations in the sequence become increasingly closer to 𝑟.

|𝑥𝑛+1 − 𝑟 | ≤ 𝑘 |𝑥𝑛 − 𝑟 |

But we also have

31

	Taylor
	Alg. de Horner: Polynomial evaluation
	Error
	Non-linear equations
	Bisection
	Newton's method
	Secant method
	Fixed point iteration

	P2

