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Cinematica y dindmica (mecénica)
* Campos eléctricos y magnéticos

¢ Circuitos

Termodinamica

2 Measurements and magnitudes

Measurements seek to compare a prediction with an observation, so as to test a hypothesis. A
magnitude is a number accompanied by a unit. Some magnitudes are:

Length, measured in meters ()
e Time, measured in seconds (s)

* Mass, measusred in kilograms (kg)

Current, measured in ampers (A)

Temperature, measured in kelvins (k)

Matter, measured in moles (mol)

We consider 103 (e.g. kilometer) and 1073 (e.g. milimiters) to be within human scale. We call
mass, seconds and kilograms the mechanical units. We define the force unit, or Newton, as

[F] =N =kg
)
and the Pascal unit as
N
[P] =Pa= —
m



We use scientific notation and terms which express quantities as powers of ten. For instance, 10'?
is the tera, 10° the giga, etc.

The magnitudes hereby described are suited for algebraic manipulation. For instance, m X m = m?,

andsx%:m.

3 Vectors

Vectors are used to express position, displacement, velocity, force, acceleration, fields, etc. A vector

H
A (or sometimes 7) in the general sense has a direction (line), an orientation, and a length (or
magnitude). A vector also has an application point, which denotes the point of origin of the vector.

When saying ¢ = b, we mean that ¢ and b coincide in direction, magnitude and orientation,
irrespective of their application point.

The scalar product is defined as the usual mapping in the space R” X R +— R”. Intuitively, the
scalar product 1@ “streches” or shrinks” a vector, depending on wheter || < 1 or not, and the
positivty or negativity of A determines whether the vector inverts its direction or not. In general,

13| = ifa)

_)
The sum of vectors, @ + b, is a mapping R x R” — R”. As usual, and in a graphical sense, the

sum corresponds to the application of the parallelogram rule.

Parallelogram rule. Make @ and_b) coincide in their point of application. From the tip of @, draw
- —
a copy of b, and from the tip of b a copy of @. The corner of the thus generated parallelogram is
é
thetipof @ + b.

Alternatively, from the tip of @ write —b) Then @ +—b) is the vector which goes from the point of

application of @ to the tip of ?

The sum of vectors is commutative, associative, and distributive with respect to scalar product.

H
If A is a vector, we use Ay and A, to denote the projection of the vector over the axis x or y,
respectively. Using A, and A, one forms a rectangular triangle with sides Ay, A, and a hypotenuse

of length ,1_4)’

Let 0 be the angle formed by A with the x-axis. Then, using trigonometry,



A A,
cosf = — sinf = —

4] [

from which one can find A,, A, assuming one knows #. From this follows that F)‘ and 6 fully deter-
mine all the information about the vector, insofar as the allow us to determine A,, A,. Conversely,

. . . . ﬁ .
knowing A, and A, is also sufficient to determine A, insofar as

X

A ’X‘ sin 6 A
’,_4)‘:1/A§+A§, A—y:—:tanezezarctan(A—y)
x ,X|cos0

As convention, we use 7 to denote the versor (vector of length 1) with direction parallel to the x-axis,
and J the versor with direction parallel to the y-axis.

. —> .o . ~. .
Notice that, for any vector A, A, isi times Ay, and A, is j times A, which means

—> ~ ~
A=Ad+Af

H
When writing A in this way, we say we write it in term of its components x, y. In terms of linear
algebra, it’s not hard to see that we are simply expressing that 7, j form a basis of R%. Thus, it is
equivalent to write

and

—> ~ A
A= ’1_4)‘ (cos@i+sind j)

From this follows as well that

e d — ~ N ~ A
A+ B =(Ad+Ayj)+ (Bs+Byj)
=1 (Ax+By) +Jj (A, +By)

which means the sum of vectors has as components the sum of the components.



- = .
The scalar product of two vectors, A - B, is a scalar defined as

- =
A-B :’1_4)"73}‘0059

where 6 is the angle formed by the two vectors. The scalar product is positive if cos 6 is positive,
which occurs for 0 < 6 < 90. It is negative if cos @ is negative, i.e. if 90 < 6 < 180. Clearly,

- =
A-B=0 < 6=90.

In general, from the definition follows that

- =
A B =AB, +AB,

The vectorial pI‘OdUCt1_4) B is a vector perpendicular to the plane formed be and B. Tts module
is ,X| '79)‘ sin 8, and its direction is given by what’s called the right-hand rule.



3.1 Excercises
— A P d A A ==
(2) Sean los vectores A =2i+3) B=4i—-2jy

(representacion polar) de los vectores resultantes
analitica y graficamente.

= —i + j. Determinar la magnitud y el 4ngulo
e e e =
=A+B+CyE=A+B - C. Resolver

(Analytical solution.) We’ll use A, A, to denote the components of the vector X, and same for all

_)
other vectors. We know the components of D are

Dy,=A,+B,+C,=2+4-1=5, Dy=3-2+1=2

from which readily follows that |D| = V52 + 22 = 29 ~ 5.385. Similarly,

E,=2+4+1=7, E,=3-2-1=0
from which follows that |[E| = V72 = 7.

Now, we must recall that

Z)
60— = arctan | —
Z Z

X

_)
forany Z.

b

We need not memorize this: it is trigonometrically clear that Z, = cos 6 ’7‘ and Z, = sin 6 ’7
and therefore

Z
Y = tan 6

X
. . — —>
And arctan is the inverse of tan. Anyhow, for £ and D we have

Ey
6 = arctan 7= arctan (0) =0

X

D, 2
f— = arctan | — | = arctan | = | ~ 0.38
D D 5

X



(3) Can two vectors of different magnitud be combined and yield zero? What about three?

- =
The zero vector is the only vector with magnitude zero. Let A, B arbitrary vectors. Then

’X +79)‘ = \/(Ax +B,)? + (A, + By)?

which is zero if and only if

(Ax + By)? + (Ay + By)? =0

This only holds if A, + B, = Ay, + By, = 0. But

Ay +B,=0= A, =-B,, Ay+B,=0=> A, =-B,

But then

|A| = \/A§ +A} = \/(—BX)Z +(-By)? = \/B)% + B3 = |B|

i3]0 = 3|3

It is simple to see that three vectors of different magnitude can add to zero.



Assume A+ B+C =2i+jand A = 6{ —3j,B = 2i + 5]. Find the components of C. Solve
analytically and graphically.

‘We know

6+2+C, =2, -3+5+C, =1

from which follows that C, = -6, C, = —1.



(5) A and B have a magnitud of 3m, 4m respectively. The angle between them is 6 = 30 degrees.
Find their scalar product.

Their scalar product is

(|B| cos @) |A|
Recall that

180
Angle in degrees = Angle in radians - —
s

Thus, thirty degrees equates to 30155 ~ 0.523 radians. Then the scalar product is

4¢0s(0.523) x 3 ~ 10.395



(6) Find the angle between A = 4 + 3 and B = 6i — 3].

Recall that

A-B=|A||B|cosf

where 6 is the angle between the vectors. This readily entails that

A-B p
——— =08
|Al|B|
or equivalently that
)
6 = arccos
|Al B

Now, A-B=4x6+3x-3=24-9=15and |A||B| =5 -6.708 = 33.541.

Therefore,

15
33.541

6 = arccos ( ) = arccos (0.447) = 1.107



(7) LetV = (%, %) be the vector of components. Find the components of the vector of module 5
whose direction and orientation (sentido) are those of the given vector.

Assume X = (x1,x») is of magnitude 5. Any vector whose direction and orientation are the same
than those of V is ”a stretching” of V. In other words, for X to satisfy the requirements, we must have

=1y (1

for some A € R. (Furthermore, A4 > 0 since otherwise orientation is not preserved.)

Now, from equation (1) follows that

1X1l = llyll 2)

since the magnitude of a scaled vector is the scaled magnitude of the vector. Equation (2) simplifies
to

71 = o - 12 G

From this readily follows that %llf || = A. But it is a hypothesis that ||X|| = 5. Therefore,

3
/1:— =

5 4
V= 4)

—_
]| DN

In other words,

&)

=l
Il

|
<

which is ugly but can be simplified.
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(8) Write the expression of the vector product ¢ = i X V in the following cases:
1. u,V are coplanar. Provide a graphical interpretation.

2. il =2-3]+kand ¥ = —3{+ j +2k. Find the module of the resulting vector ¢ in two different
ways.

(1) Two vectors are coplanar if there is a plane which contains them both. Since the vector product
U X v is a vector orthogonal to both i and v

11



(12) Un avién vuela 200 km hacia el NE en una direccion que forma un angulo de 30 hacia el este
de la direccién norte. En ese punto cambia su direcciéon de vuelo hacia el NO. En esta direccion
vuela 60 km formando un dngulo de 45 con la direcci6on norte.

(a) Calcular la mdxima distancia hacia el este del punto de partida a la que lleg6 el avidn.
(b) Calcular la maxima distancia hacia el norte del punto de partida a la que llegé el avion.
(c) Calcular la distancia a la que se encuentra el avion del punto de partida al cabo de su recorrido.

(d) Determinar vectorialmente el camino que deberia hacer para volver al punto de partida. Resolver
grafica y analiticamente.

Sea A el vector que describe el primer recorrido, B el vector que descrlbe el segundo recorrido. Al
final del problema, el avién se encuentra en la posicidn indicada por A+B.

Como A describe un movimiento con un angulo de 8 = 60 grados (90 —-30) respecto al eje y (norte),
y una magnitud de 200km, podemos determinarlo recordando que

Ay = ‘Z‘cos 0, Ay = ‘j) sin 6
En radianes, 0 = 180 X 60 =1.047

A, =200 X cos (1.047) = 100.034, A, =22 x sin(1.047) = 173.185

En conclusién, A = 100.0347 + 173.185 J. Mismo razonamiento nos da que el angulo del segundo
vector es de 130 grados, lo cual en radianes nos da @ = 7/180 x 130 = 2.268. Por ende,

B, = 60co0s(2.268) = —38.524, B, = 60sin(2.268) = 45.998

Es decir que B = —38.5247 +45.998. De esto se sigue que C = A + B = (61.51,219.183).
(a) Claramente, es la coordenada x del vector E, 100.034.

(b) Claramente, es la coordenada y del vector C: 218.183.

(¢) Claramente, es la magnitud de C, es decir ||C|| = V61.512 + 219.1832 = 227.65.

(d) El camino para volver es dado por C x (-1).

12



4 Cynematics

4.1 Unidimensional movement

The study of movement requires two variables: position (x, in units of length) and time (¢, in
seconds). We begin our study with unidimensional movement, i.e. movement which occurs along
a single axis.

Experimentally, a way to study unidimensional movement could consist in taking a sequence of
photographs (from the same position and angle) of the moving object at times ¢1,...,#,. Some
coordinate system must be imposed upon the space along which the object moves, e.g. setting
an axis with origin at the initial position of the object, the same direction as the movement of the
object, and some appropriate units. The photographs would then provide a sequence of positions
X1y.e-,Xp.

Clearly, {z,},{x,} could be understood as defining a discrete function ¢(n), which on its turn
might be interpolated to obtain a continuous approximation ¢(¢). To the limit, the continuous
approximation converges to what we call a movement function.

Movement function. A movement function x(7) is a continuous, smooth function.

Examples. x (1) = ¢ (reposo), x(¢) = at + b (MRU), x(t) = at’> + bt + ¢ (MRUV).

4.2 Coincidence, displacement, temporal intervals

If A, B are objects with movement functions x4 (z), xg(#), we say A, B coincide (se encuentran)
when x4 (1) = xp(1).

We define displacement (desplazamiento) (relative to positions xy,x3) as Ax = xp — x;. Notice
that Ax is not the same as distance: if one travels from A to B and then to B from A, the distance
traveled is to times the distance from A to B, but Ax = 0.

We also define a temporal interval, relative to two times t1, tp, as At = t, — t1, where 1, > 1.

4.3 Velocity
We define median velocity (velocidad media) as

Ax  xp—x)
At -1

&)

V=

13



where x, = x(t2),x; = x(#1). Clearly, v is the slope of the line which intersects x(¢) at points
t1, 1. The sign of v then determines the direction (sentido) of movement. The unit of v is then L/T
(length over time), for instance kilometers per hour. Median velocity indicates the rate of change
of distance in time.

Clearly, an object in reposo has a median velocity of zero. An object with movement function
x(t) = at + b (MRU) has median velocity a. The case of interest is an object with a quadratic
movement function (MRUYV).

Ifx(¢) = at® + bt + ¢, let m the midpoint of the quadratic expression and take 1y =m —c,tp = m+c
with ¢ > 0. Clearly, the median velocity from #; to m is negative, that from m to ¢; is positive, and
that from 7, to ¢, is zero. This is sufficient to suggest that median velocity does not clearly express
the nature of the movement.

For that reason, the length A of the interval [#], ;] might be reduced in the limit to zero, so that we
get an accurate notion of the instantaneous (or close to instantaneous) change of direction. Needless
to say, the limit converges to the slope of the line tangent to (¢1, x(z1)), i.e. the derivative of x () at
t1. Thus, we obtain the definition of instantaneous velocity, usually called simply velocity:

Ax  dx
f)=lim — = — =V'(t 2
V() M0 AL dt V) )

Again, [v(1)] = % Quite clearly, v(¢) = v for constant and linear functions, but for the quadratic
function x(¢) we have

x(1) = at® + bt +c, v(t) =2at+b

14



5 De adelante hacia atras

&x

S esla

Recordemos que si x(¢) es funcién de movimiento, v(7) = % es la velocidad, y a(t) =
aceleracion. Naturalmente, esto significa que

w0 = [virar+n. 0= [awrarse
donde D, C son constantes de movimiento que dependeran de las condiciones iniciales.

(1) Derivada y puntos de inflexion Un punto de inflexién de f continua y dos veces derivable en
[a, b] es un valor xo € [a, b] t.q. f®(x¢) = 0. Los puntos de inflexién representan un cambio de
comportamiento en f, en particular transiciones de concava a convexa y viceversa.

Intuitivamente, y exceptuando casos limite (como f” constante), si f”(xop) = 0, entonces alrededor
de xo hay un cambio de signo en f”, lo cual quiere decir que en el entorno alrededor de x la
funcién original pasa de crecer a decrecer, o de decrecer a crecer.

15



6 Movimiento bidimensional (cinematica 2D)

Se modela con una curva en el plano cartesiano. La curva (el dibujo del movimiento) se denomina
trayectoria. La trayectoria no es una funcién, obviamente (e.g. una circunferencia es una trayectoria
posible).

La descripcion de la posicion del objeto en cada instante de tiempo ¢ se descsribe con vectores. En
el plano cartesiano, decimos que 7 = £i + yJ es un vector posicion si la punta de 7 se corresponde
con la posicion del objeto (en un tiempo dado).

Sea @ el angulo formado por 7 y el eje x, de manera tal que x = |F|cos,y = |F|sinf. Es decir,
7= |F|cosOi + |F|sinb].

Ahora pensemos el objeto en movimiento, y que registramos a lo largo del tiempo ¢ las posiciones

x(t),y(t). Claramente, x(z), y(¢) son funciones de movimiento unidimensionales. Por lo tanto,
podemos definir el vector posicion de manera general como

F(t) =x(0)i+y(0)] (1)

Ahroa consideremos la trayectoria 7" (conjunto de puntos en el eje cartesiano) del objeto. Sean
Py, P, € T dos puntos en el plano que pertenecen a la trayectoria. Definimos el desplazamiento
del objeto como

AF = o @)

donde 77, 7 son los vectores con puntas en Py, P,. De esto se sigue que

A?Z?(Iz) —7(1‘1) (3)

para dos instantes de tiempo 71, ;. Ademads, es claro que AF es el vector que conecta las dos puntas,
desde P; hasta P,, y que 7> = ] + AF.

La velocidad media en el intervalo de tiempo [?1, #;] se define entonces como

— A7 F(t) —F(1)
V[tl,l‘z] = A_t = ? (4)

lo cual es claramente un vector que contendra las velocidades medias en las direcciones x e y. El
vector velocidad entonces se define como uno esperaria:

16



-

Ar
- — 1 =
v (@) AtILnO At )

F(t2) = F(t1)

= lim
Ar—0 h—1

3 dr

Cdt

= L (i +y(0)))
dx
dx, dy .,

BT,

Por lo tanto,
V(1) = ve()i + vy ()] (6)

con vy, v, las velocidades correspondientes a las funciones de movimiento x(z), y(z).

(1) Interpretacion grafica de v. Grificamente, el vector velocidad v(7) se representa como sigue.
Imagine la trayectoria 7 y un vector posicién 7 que conecta con P € T. Entonces f serd paralelo a
la recta tangente a la trayectoria 7 en el punto P. Esto no es una derivada, porque la trayectoria 7'
no es una funcion. En otras palabras, el vector velocidad es tangente a la trayectoria.

Definimos entonces el versor

v
V== (7)
vl
que nos da la direccion tangencial de la velocidad.
Asi como tenemos un vector velocidad, tenemos el vector aceleracion
. d’x, d*y .
a(r) = “5i+52] (8)
dt dt

de acuerdo al mismo razonamiento limite que nos dio el resultado (6). El vector aceleracion
también puede descomponerse en sus direcciones tangencial y normal (respecto a la trayectoria).
La aceleracion tangencial serd la direccion de la velocidad:

A

., . ~ 1% .y ~ -
aceleracion tangencial — V = —, aceleracion normal — 7i = (V) 9

-

|v

17



donde LV es el vector tal que LV - ¥ = O (perpendicular).

() Algunas observaciones. Hablemos en un intervalo de tiempo [¢,1 + At].

(a) Cuando v cambia de médulo y de sentido, pero no de direccion, la aceleracion es puramente
tangencial, es decir estd en la direccion de la velocidad. (Son paralelos.)

(b) Cuando v cambia de direccién y de sentido, pero no de médulo (i.e. el vector apunta hacia otro
lado pero tiene el mismo largo), se cumple que la aceleracion es perpendicular a la velocidad. Es
decir, es puramente normal.

(¢) Si v cambia de médulo, de sentido y de direccidn, el vector a tendrd una componente tangencial
y normal.

La aceleracion puramente tangencial resulta en un movimiento unidimensional, una linea recta. El
caso (b) corresponde a un movimiento bidimensional.

6.1 Tiro de proyectil

El tiro de proyectil es un movimiento bidimensional bajo la accién tnica de la gravedad. Si
imaginamos la pardbola de un proyectil, surgen preguntas como cudl es su altura maxima, su
destino final, etc. Asumamos que se ha impuesto un sistema de coordenadas.

Observemos que el objeto no tiene aceleracion en el eje x, solo velocidad. En el eje y el proyectil
es afectado por la gravedad. Por ende,

Luego, ent =0,

~

0= vai+vOyj =\7(I =0)
Asumamos que por convencién, 7(z = 0) = 0. Por ende,
?(Z‘ =0) ZXQf+y0f

Entonces,

18



- I m S
V(1) = voul — (9.8s—2t +Voy)J

Integrando una vez mas,

. . m 1> R
7(t) = (voxt +x0)i + —9.8—25 +voyt +yo|J
s

Pero 7(t) = x(¢)i + y(t)]. Por ende,

m t?
x(t) = voxt + X0, y(t) = —9.8—25 +Voyt + Yo
s

Vemos entonces que x(z) es lineal, y su pendiente es la velocidad inicial (en x) dada por vq,. y(?),
por otro lado, es cuadratica con maximo. Dicho méximo se corresponde con el punto més alto. Es
decir, el punto maés alto ocurre en el tiempo 7, tal que

Vy(tm) =0 = t,, =

El tiempo de vuelo estd dado por el tiempo en que la altura se hace cero, es decir el #y¢], tal que
V(tyuelo) = 0. Es la raiz mdxima de y(¢). La trayectoria serd despejando ¢ de x:

X — X0

Vox

La trayectoria también serd una pardbola, en este caso particular. Y como en cada punto la
aceleracion es la aceleracion negativa de la gravedad, los vectores aceleracion a lo largo del tiempo
serdn siempre “flechas rectas hacia abajo”.

6.2 Excercises

(1) Consider
x(7) =1 [ﬂz] 2 -3 [ﬂ] t
s
the movement function of a body travelling in a straight line, with x in meters and ¢ in seconds.
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(a) Plot x(1)
(b) Determine analytically the median velocity in [-1, 5], [-1, 8], [-1,0.9], [-1,0.99], [-1, 0.999].

(c¢) Let At, = t, — tg with {¢t,,} = {-1,5,4,1,-0.5,-0.8,-0.9,-0.99, —0.999} all measured in
seconds. To what value does the median velocity of the object converge as ¢, decreases in the
interval [—1, —1 + Atz,]? What is the geometrical interpretation of this result?

(d) Find the equation for the line tangent to x(¢) at r = —1s.

(a) Notice that since ¢ is in seconds, ”:—f correctly expresses a quantity in meters, and so does mTt
So we will from now on write simply x(¢) = ¢> — 3¢, understanding that it is a mapping from time
in seconds to meters.
10 %
x(t) = 1> - 3t
8 1

t(s)‘

-2 1

(b) The median velocity of an object in the time interval [#,, ;] was given by

Ax _ x(ty) = x(ta)

— 1
At th —t, M

So excercise (b) is as simple as plugging in the corresponding values into equation (1) and I skip

1t.
. .- d
(c) Let  be an arbitrary value. Then by definition of <7,

x(t+ At) — x(1) y x(t+At) —x(t) dx
= lim =—
A—0  (t+Ar) —t At—0 At dt

the derivative of x(7) at time 7. In particular, the limit whose convergence we are asked to study is
nothing but the limit above with = —1:

20



. x(=1+Ar)—x(-1)
lim =
At—0 At

x'(=1)

So suffices to observe that x"(¢) = 2t — 3 and x’(—1) = —5. In conclusion, the object at time r = —1
travels at an instantaneous velocity of —5 meters per second.

(d) The line €(t) = at + b tangent to x(¢) at t = —15 has slope a = —5 and crosses through the point
(=1,4). So we must have —=5(-1)+b =4 &= b=4-5=-1. Sothelineis £(t) = -5t — 1.

21



(4) Answer the questions.

(a) Can an object have null velocity and yet possess acceleration?

Let x(¢) the describe the movement of the object and v(¢) = x’(¢) its velocity, both as a function
of time. Assume for an arbitrary #y that v(¢) = 0. It is very much possible that v’ (zg) # O.

Consider, for instance, that v(¢) is linear and non-constant, making v’ (#) = a anon-null constant.
Then there exists a unique root r s.t. v(r) = 0, but independently of this fact v/ (r) = a # 0.

Physically, it should be clear that if a non-moving object could not possess acceleration, then
it would be impossible for it to pass from a still to a moving state. So, at least at the intutition
level, this reductio ad absurdum suffices.

(b) Can a moving object have a null displacement in a given interval and yet non-null velocity?

Naturally. Take as example an object moving in circles at a constant, non-null velocity v, and
assume it travels a full circle in ¢ seconds. Then all of the intervals in {[t, 7o + tk] : k € N}
are such that they give null displacements. Yet the object is moving.

(c) Can an object have an east-bound velocity of while its acceleration is west-bound?

Informally, this is quite clearly the case, insofar as any positively-moving object whose velocity
decreases must have a negative acceleration.

(d) Consider an object moving on a straight line, with the east being the positive direction, under
a velocity of v(f) = 20ms™' — 2ms~2¢. For ¢ = 0s, 7 = s, what is the situation?

Its velocity is clearly positive in both cases (20 and 18), evidently decreasing, which points out
the fact that its acceleration is negative (-2).

(e) A ball is thrown vertically. What do the signs of velocity and acceleration look like as the object
ascends, and what does that mean? And when the object descends? What happens at the highest
point?

Clearly, its velocity is positive during the ascending phase, and negative during the descending
phase. At the highest point, the velocity will be exactly zero.

Conversely, acceleration is always negative due to the force excercised by gravity on the ball.

It is the fact that acceleration is constantly negative what causes the ball not only to lose velocity
as it goes up until it begins to fall again, but to then fall more and more rapidly as time goes by.
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(5) A particle moves through the x-axis with movement function x(¢) = 3 + 17¢ — 5¢2, with x in
meters and ¢ in seconds.

(@) What is the position of the particle at times {1, 2,3}?
(b) At what point in time does the particle return to the origin?

(¢) Find v(#) and determine the instantaneous velocity at times {1, 2, 3}. When is the velocity null?
What is the particles velocity when it crosses the origin?

(d) Plot x(1), v(1), a(t).

(@) Trivial, simply compute x(1),x(2),x(3).

(b) See that

(=0 — 1= 17 VI72+4x3x5
U “10° 10

which gives approximate solutions #; = —0.168, , = 3.568. It makes no sense to speak of negative
time and we keep only the positive solution # = 3.568. Thus, the particle returns to the origin after
approximately 3.568 seconds.

(¢) The first derivative of x(7) is

v(t) = —-10t+ 17

The instantaneous velocity at times 1, 2, 3 are v(1) =7,v(2) = -3,v(3) = —13.

17

—=1.7
10

17=10t & t=

The particle crosses the origin at approximately time 3.568 and its velocity is approximately
v(3.568) = —18.682.

(d) The acceleration is constant: a(t) = —10.
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Position x(7) = 3 + 17t — 5¢>

Velocity v(t) = 17 — 10¢

Vi) (m/s)
10 |
t(s)
1 3 4
-10 ¢
=20
Acceleration a(t) = —10 £ (s)
a(t) m?) 2 3 4
5

-10




(6) (a) Determine the instantaneous acceleration of the object plotted in the exercise fort = 3,7 = 11.
(b) Compute the distanace traveled by the object in the time intervals [0, 5] and [0, 9] and [0, 15].
(¢) Knowing that x(t = 6) = 0, find the position of the object at r = 0.

(d) Give an expression for the objects position for all ¢.

(e) Plot x(¢),v(t),a(t).

The velocity of the object is constantly 20m/s from time # = O to time ¢+ = 6. Then it linearly
increases until it reaches 44m/s at t = 9, from whereon it linearly decreases until it reaches Oms at
time ¢t = 15.

The linear expression €| (t) = a;t + b, which satisfies £(6) = 20, £(9) = 44 is such that

661] +b1 = 20, 9611 +b1 =44

The associated system of equations yields that b; = 20 — 6a, from which follows that 9a; + (20 —
6a;) = 44, entailing

24
(11:?:8

From this readily follows that b; =20 — 6 X 8 = —28.

Similarly, the linear expression ¢>(t) = axt + b, which gives a line s.t. £2(9) =44, ¢>(15) = 0 must
satisfy

9a2+b2 =44, 15a2+b2 =0

Then b, = —15a; and 9a, — 15a;, = 44, entailing a; = —23—2. From this follows that b, = 110 via
simple calculations. Thus,

20 0<tr<6
v(t) = 8¢ —28 6<1<9
~2t+110 9<t<15

It should be intuitive to graps that the distance travelled d(a, b) in the interval [a, b] is
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b
d(a,b) = / v(1)] dr

If v(1) is in meters per second, and ¢ is in seconds, the total number of meters travelled in a time
interval [a, b] is the summation of the meters per second travelled in every instant! This will involve
the anti-derivative of v(7), i.e. the movement function x(7), which we might as well compute at
once.

x(1)

/ v(t) dt

201 + Cy 0<1<6
=180 -281+C;  6<1<9

~2C 41100+ C3 9<1<15

20t + C; 0<tr<6
=412 - 28t + C» 6<t<9
2241100+ C3 9<1<15

The constants Cy, Co, C3 must satisfy the restriction of continuity and of preserving the necessary
values. In particular, we need 20(0) + C; = 20. Since we know x(6) = 0, we need 120+ C; = 0,
i.e. C; = —120. We also need

4(6%) —28(6)+C, =0
to ensure continuity, so
C, =24

Then we can know what x(9) is and deduce C3, which ends up being —597.

20t — 120 0<1<6
. x(t) = 41> — 28t +24 6<t<9
2241000 -597 9<t<15

In any case, we could have computed the distance travelled without x(¢) (I computed x () because
it’s part of the exercise):
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5
d(0,5) :/ v(t) dt
0
=20 x t];
=20x%(5)
=100

6 9
d(0,9):/0 v(1) dt+/6 v(t) dt

6 ’ 9
:20><t] + (4 —28t)]

0 6
— 120+ [(4% 81 =28 X 9) — (4 X 38 =28 X 6)]
— 120+ 96

=216

etc.
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(7) A car and a truck leave at the same instant, the car initially being a certain distance behind the
truck. The latter has a constant acceleration of 1.2m /s, while the car accelerates at 1.8m/s>. The
car reaches the truck when the latter has covered 45 meters.

(a) How much time does it take for the car to reach the truck?
(b) What is the initial distance between both vehicles?
(c¢) What is the velocity of each in the moment the cross paths?

(d) Plot x(1), v(1), a(t).

(a) Since both vehicles have constant accelerations, they have linear velocities and therefore
quadratic movement functions. They will meet when the parabolas corresponding to these functions
intersect.

Let x (r) denote the movement function of the car, x;(¢) that of the truck. We then wish to find the
solutions to x1 () = x,(¢). Now,

vl(t):/al(t):/l.S dt = 1.8t + Cy 2)

vz(t)z/az(t):/1.2dt:1.2t+C2 3)

are the velocities of the car (v{) and the truck (v;). Since at r = 0 the velocities of both vehicles is
zero (they start from rest), it is necessary that C; = C; = 0.

We know that the car reaches the truck when the latter has covered 45 meters, so the question is
what is the time ¢y when the distance covered by the truck is that one? In other words, we need to
find ¢y such that

fo
/ vo(t) dt =45
0

to
(:)/ 1.2t dt =45
0

= [0.62] =45
= 0.61 = 45

—1=V15=V25x3=5V3
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Thus, the vehicles meet at time 79 = 5 V3.

(b) The initial distance between both vehicles is given by |x;(0) — x2(0)|. From the velocities
V1, v we can determine that

x1(1) =092 +C),  x(t) = 0.61* + C} 4)

Let us fix our coordinate system so that the starting position of the truck corresponds to the origin.
Then C} = 0. Knowing that both vehicles coincide at time 79 = 5 V3, we also know X (t9) = x2(2p),
1.e.

0.9(25 x 3) + C} = 0.6(25 x 3) (5)

which entails 67.5 + C i = 45, from which follows that C i = —22.5. Thus, the original distance of
both vehicles is 22.5m.

(¢) This consists simply of computing v{(tg), va(tp). Trivial.

(d) Meh.
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(8) A car travels parallel to a train rail. The car stops at a red light in the exact instant when a train
passes with a constant velocity of 12m/s. The car remains at halt for 6s and then continues with a
constant acceleration of 2m /s>.

(a) Determine the time it takes for the car to reach the train, with ¢ = 0 being the instant in which
the car halted.

(b) Determine the distance traveled by the car from the red light until it reached the train.

(c) Determine the car’s velocity at the instant it reaches the train.

(a) Let a;(¢) be the acceleration of the car, defined as

0 0L 6
a1(t)={2 t:é< ©)

Let vo(f) = 12m/s be the constant velocity of the train. Let the point of halt be the origin of our
coordinate system, so that at time ¢ = 0 (when the car halted) both the train and the car are at
position zero. Observe then that it follows that x,(#) = 127 (in meters) via integration of v,(z) and
the necessary condition of the constant of integration being zero.

Integration of equation (6) gives

C 0<t<6
vi(y=4"" 7
2t+Cp t>6

where the constants of integration must satisfy two constraints: (a) v{(0) = 0 and v; must be
continuous. From this follows that C; = 0 and that 2(6) + C, = 0, i.e. C, = —12. Therefore,

0 0<tr<6
1) = - 8
i) {21‘—12 1> 6 ®
Via integration of v,
C! 0<t<6
=3t N 9
6 () {t2—12t+C£ i 6 ®

Again, C| must of course be zero, and x; (6) must also be zero, meaning that C; = -36+12(6) = 36.
Therefore,
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0 0<t<6
1) = - 10
*1(0) {t2—12t+36 t>6 (10)

The car reaches the train at the time ¢y > 6 which satisfies x;(79) = x2(), so we solve

22— 12t+36=12t &= > -24t+36=0

which has solutions

24 V242 -4 %36 V432

SN A0 h.
2T 2 * 3

~ 12 +£10.392

Keeping only the positive solution, we have that 7o ~ 22.392.

(b) The distance traveled by the car from the red light until it reached the train is the distance
traveled from ¢ = 0 to ¢ = 1, i.e.

fo
,/0 Vl(t) dt = |X1(t()) —xl(t0)| = xl(t()) ~ 268.697

where the equality above holds only because velocity is always positive (i.e. the car moves only in
one direction).

(¢) Simply computing v{(ty) gives the answer.
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(9) A ball is thrown vertically and upwards from the floor with initial velocity vg. Write the
equations for the movement of the ball and plot graphically the vectors ¥(z), v(t), d@(t). Identify the
conditions for the instant of maximum height and the instant it reaches the floor.

The move is strictly vertical, so 7(f) = 07 + y(¢)j and we need only determine the unidimensional
vertical movement function y(¢). Now, the ball is affected only by gravitiy, i.e. it is subjected to a
constant acceleration of @ () = 0f — 9.8 7. From this we can derive the vertical velocity:

vy(t) = —9.8/ dt =-98t+C

The constant of integration must satisfy the initial velocity being v, so we must have

vy(t) = vo—9.8¢

From this follows that

9.8
ry(t) = / vo — 9.8 dt = vot — th +C’
If we assume the position on the floor (vertically) is zero, we must have C’ = 0, and

ry(t) = vot — 4.9¢*

In summary,

F(t) =00 — (vor —4.9%) ],  $(1)=0i-9.8:],  ad(r)=0i-9.8]

Maximum hight will occur at time ¢ # 0 when the vertical velocity of the ball is exactly zero. So,
we solve

Vo—9.8/=0 — ;—%:t

It will reach the floor at time ¢ # 0 when the vertical position of the ball is zero, so we solve

vot =492 =0 = t(vo—4.9t) =0
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The root t = 0 is not a solution that interests us, so we only care about the root that solves
vo—4.91=0,ie. 1= 7%.
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