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Figura 1: Severino Di Giovanni, autor de este apunte, te recuerda que siempre seas
solidario con tus compañeros, que compartas y te dejes compartir conocimiento, y que
defiendas tus derechos estudiantiles. En la Argentina de Milei, la estupidez y el egoísmo
son celebradas virtudes, y está en tus manos promover y practicar una ética superadora.
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1. Readme
Este apunte puede contener errores. En particular, el capítulo de circuitos no fue corre-
gido. Lea con cuidado y espíritu crítico.
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2. Dinámica (P2)
(1) La siguiente figura muestra una masa 𝐴 de 100 kg, apoyada sobre la superficie de un
plano inclinado. No existe rozamiento entre la masa 𝐴 y la superficie del plano inclinado.
La cuerda 𝐴𝐵 es paralela al plano en que se apoya 𝐴, en tanto que la cuerda 𝐴𝐶 está
horizontal. Calcular:

1. el peso del bloque 𝑃 sabiendo que el sistema está en equilibrio,

2. la reacción del plano sobre el bloque 𝐴.

30◦

𝐴

𝐵

𝐶

𝑃𝑄 = 10 kg

Solución. (1) El vector unitario paralelo al plano es 𝑘̂ := (cos 𝜃, sin 𝜃). Como el sistema
está en equilibrio, la magnitud de las fuerzas que actúan en dirección paralela al plano
inclinado se anulan. Si −→𝐹 es una fuerza, denotamos con 𝐹∥ := −→

𝐹 · −→𝑘 su componente
paralela al plano. Es fácil ver que

𝑄∥ + 𝑃∥ + 𝐺 ∥ = 0
⇐⇒ −𝑄 cos 𝜃 + 𝑃 − 𝐺 sin 𝜃 = 0
⇐⇒ 𝑃 = 𝑚𝑄𝑔 cos 𝜃 + 𝑚𝐴𝑔 sin 𝜃
⇐⇒ 𝑚𝑃𝑔 = 𝑔

(
𝑚𝑄 cos 𝜃 + 𝑚𝐴 sin 𝜃

)
⇐⇒ 𝑚𝑃 = 𝑚𝑄 cos 𝜃 + 𝑚𝐴 sin 𝜃

⇐⇒ 𝑚𝑃 = 10kg ·
√

3
2

+ 100kg · 1
2

⇐⇒ 𝑚𝑃 = (5
√

3 + 50)kg
𝑚𝑃 = 58,6602540378kg

(2) La reacción −→
𝑁 debe contrarrestar la magnitud de las fuerzas perpendiculares al

plano. Sea 𝑢̂ := (− sin 𝜃, cos 𝜃) el vector unitario perpendicular al plano. Claramente,
dicho vector es perpendicular a −→

𝑃 , con lo cual el producto punto entre ambos es cero,
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i.e. −→𝑃 no ejerce fuerza alguna perpendicular al plano. Veamos cuál es la componente
perpendicular al plano de la gravedad y de

−→
𝑄 .

𝑄⊥ :=
−→
𝑄 · −→𝑢 = 𝑚𝑄𝑔 sin 𝜃

𝐺⊥ :=
−→
𝐺 · −→𝑢 = −𝑚𝐴𝑔 cos 𝜃

Por lo tanto, la magnitud de −→𝑁 = 𝑁−→𝑢 es

𝑁 = −
(
𝑚𝑄𝑔 sin 𝜃 − 𝑚𝐴𝑔 cos 𝜃

)
= 𝑚𝐴𝑔 cos 𝜃 − 𝑚𝑄𝑔 sin 𝜃

Calculando:

𝑁 = 100 ·
√

3
2

· 9,8 N + 10 · 1
2
· 9,8 N

= 9,8
(
50
√

3 − 5
)

N

= 799,704895709 N
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(2) Un cuerpo de masa 𝑚 = 10kg está apoyado en una superficie horizontal sin roza-
miento. Una persona tira del bloque con una soga fija al bloque en dirección horizontal
con una fuerza de 20N. Calcular la aceleración del bloque suponiendo despreciable la
masa de la soga.

Solución. Por Ley de Newton, la suma de las fuerzas actuando sobre un cuerpo equivale
a su masa por su aceleración:

∑︁−→
𝐹 = 𝑚−→𝑎

⇐⇒ 20N𝑖 = 𝑚𝑎𝑖
⇐⇒ 20N = 𝑚𝑎

⇐⇒ 20N
10kg

= 𝑎

⇐⇒ 2m/s2 = 𝑎
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(4) Un bloque 𝐴 de masa 𝑚𝐴 = 8kg descansa sobre un plano inclinado con ángulo
𝛼 = 37◦, unido con una cuerda y una polea sin rozamiento a un bloque 𝐵 de masa
𝑚𝐵 = 4kg. Determina la aceleración −→𝑎 de las masas y la tensión de la cuerda cuando se
deja al sistema evolucionar libremente. Realice un diagrama de cuerpo aislado.

Solución.

(Aceleración de masa A.) La masa 𝐴 es afectada por la gravedad y por la tensión de
la cuerda en dirección paralela a la pendiente. Su aceleración es también paralela a la
pendiente.

𝐺 ∥ + 𝑇 = 𝑚𝑎 ⇐⇒ −𝑚𝐴𝑔 sin𝛼 + 𝑇 = 𝑚𝐴𝑎𝐴

(Aceleración de la masa B.) De manera análoga,

−𝑚𝐵𝑔 + 𝑇 = 𝑚𝐵𝑎𝐵

Esto define un sistema de dos ecuaciones con tres incógnitas, 𝑇, 𝑎𝐴, 𝑎𝐵. Pero es fácil
observar que 𝑎𝐴 = −𝑎𝐵. Con lo cual nos reducimos a dos incógnitas y tenemos un
sistema que se puede resolver. Despejando 𝑇 en la ecuación para la aceleración de 𝐵,
obtenemos 𝑇 = 𝑚𝐵𝑎𝐵 + 𝑚𝐵𝑔 = 𝑚𝐵 (𝑎𝐵 + 𝑔). Sustituyendo en la primer ecuación,
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𝑚𝐴𝑎𝐴 = −𝑚𝐴𝑔 sin 𝜃 + 𝑚𝐵 (𝑎𝐵 + 𝑔)
⇐⇒ 𝑚𝐴𝑎𝐴 = −𝑚𝐴𝑔 sin 𝜃 + 𝑚𝐵𝑎𝐵 + 𝑚𝐵𝑔

⇐⇒ 𝑚𝐴𝑎𝐴 = −𝑚𝐴𝑔 sin 𝜃 − 𝑚𝐵𝑎𝐴 + 𝑚𝐵𝑔 {𝑎𝐵 = −𝑎𝐴}
⇐⇒ 𝑚𝐴𝑎𝐴 + 𝑚𝐵𝑎𝐴 = −𝑚𝐴𝑔 sin 𝜃 + 𝑚𝐵𝑔

⇐⇒ 𝑎𝐴 (𝑚𝐴 + 𝑚𝐵) = −𝑚𝐴𝑔 sin 𝜃 + 𝑚𝐵𝑔

⇐⇒ 𝑎𝐴 =
−𝑚𝐴𝑔 sin 𝜃 + 𝑚𝐵𝑔

𝑚𝐴 + 𝑚𝐵

⇐⇒ 𝑎𝐴 = −𝑔 · 𝑚𝐴 sin 𝜃 − 𝑚𝐵

𝑚𝐴 + 𝑚𝐵

⇐⇒ 𝑎𝐴 = −0,66519148459m/s2 {Con calculadora}

Ahora que ya sabemos 𝑎𝐴, podemos despejar 𝑇 :

𝑇 = 𝑚𝐵 (𝑎𝐵 + 𝑔)
= 𝑚𝐵 (−𝑎𝐴 + 𝑔)
= 41,8607659384N
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(5) Dos bloques de masas 𝑚1, 𝑚2 están en contacto sobre una mesa sin rozamiento. Una
fuerza −→𝐹 se aplica sobre el primero.

(𝑎) Encontrar la aceleración del sistema y la fuerza de contacto entre los bloques. Evaluar
para 𝑚1 = 2kg, 𝑚2 = 1kg, 𝐹 = 3N.

(𝑏) Muestre que si la misma fuerza −→
𝐹 se aplica en sentido contrario, i.e. sobre 𝑚2 en

lugar de 𝑚1, la fuerza de contacto será distinta.

Solución. (𝑎) Modelamos todo como un único sistema de masa 𝑚 = 𝑚1 +𝑚2 = 3kg. Se
tiene 3N = 𝑚𝑎 de lo cual se sigue que 𝑎 = 1m/s2.

(𝑏) Si aplicamos la fuerza sobre la primera masa, la segunda masa recibirá una ace-
leración producida por la fuerza de contacto: 𝐹contacto = 𝑚2𝑎. So hacemos lo inverso,
la fuerza de contacto sobre la primera masa será 𝐹contacto = 𝑚1𝑎. Como las masas son
distintas, estas fuerzas de contacto también lo sono.
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(6) Una bola de masa𝑚 = 10kg cuelga atada al techo de un auto. La tensión máxima que
la soga soporta sin romperse es 500N. ¿Cuál es la máxima aceleración horizontal que
puede alcanzar el auto sin que se corte la cuerda? Determina el ángulo entre la cuerda y
la vertical para esa aceleración máxima.

Solución. (Ac. máxima) Las fuerzas que actúan sobre la bola son la tensión de la soga
y la gravedad, y debería ser claro que, una vez que la soga se tensa, la aceleración del
auto es la aceleración de la bola. Tenemos:

−→
𝐺 + −→

𝑇 = 𝑚−→𝑎 ⇐⇒ −→
𝑇 = 𝑚−→𝑎 − −→

𝐺

⇐⇒ −→
𝑇 = 𝑚𝑎𝑖 + 𝑚𝑔 𝑗

Nos dicen que la soga se rompe si la tensión es 500N, i.e. si

√︃
𝑇2
𝑥 + 𝑇2

𝑦 = 500N

⇐⇒
√︁
𝑚2𝑎2 + 𝑚2𝑔2 = 500N

⇐⇒ 𝑚2𝑎2 + 𝑚2𝑔2 = 250000N

⇐⇒ 𝑎2 =
250000N − 𝑚2𝑔2

𝑚2

⇐⇒ 𝑎2 =
250000N2 − 9604N2

100kg2

⇐⇒ 𝑎2 =
240396N2

100kg2

⇐⇒ 𝑎2 = 2403,96 (N/𝑘𝑔)2

⇐⇒ 𝑎 = 49,0301947783m/s2

(Ángulo de ac. máxima) Asumamos que la aceleración máxima 𝑎max es alcanzada.
Sabemos que el ángulo 𝜃 entre −→𝑇 y la vertical satisface

−→
𝑇 · 𝑗 = 𝑇 cos 𝜃

Pero −→
𝑇 · 𝑗 = 𝑇𝑦 = 𝑚𝑔. Por ende,

𝑚𝑔 = 𝑇 cos 𝜃 ⇐⇒ cos 𝜃 =
𝑚𝑔

𝑇
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Si asumimos que 𝑎 = 𝑎max, entonces 𝑇 = 500N por dato del problema. Es decir,

cos 𝜃 =
10 · 9,8
500N

= 0,196

Y como arcsin(0,196) = 0,197277126rad, este es el ángulo entre −→𝑇 y la vertical.
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(9) Un bloque de masa 𝑚 se desliza sobre el suelo mientras una fuerza de magnitud
12N tira del mismo formando un ángulo 𝜃 con la horizontal. 𝜇𝑑 = 0,4. 𝜃 ∈ [0, 𝜋/2]. El
bloque siempre permanece sobre el suelo. Hallar 𝜃 que maximiza la aceleración.

Solución. Sea−→𝐸 la fuerza que empuja la masa.−→𝑁 es la reacción del suelo que contrarresta
las fuerzas que empujan la masa hacia abajo. Como la masa permanece en el suelo
siempre,

𝑁 − 𝐺 + 𝐸 sin 𝜃 = 0 ⇐⇒ 𝑁 = 𝐺 − 𝐸 sin 𝜃

La aceleración horizontal es dada por

𝑚𝑎 =
−→
𝐸 · 𝑖 − 𝑅

= 𝐸 cos 𝜃 − 𝜇𝑑 [𝑚𝑔 − 𝐸 sin 𝜃]
= 𝐸 cos 𝜃 − 𝜇𝑑𝑚𝑔 + 𝜇𝑑𝐸 sin 𝜃

Es decir, la aceleración horizontal para un ángulo 𝜃 dado es

𝑎(𝜃) = 𝐸 cos 𝜃 + 𝜇𝑑𝐸 sin 𝜃 − 𝜇𝑑𝑚𝑔
𝑚

La derivada respecto a 𝜃 es

𝑑𝑎

𝑑𝜃
= −𝐸

𝑚
sin 𝜃 + 𝜇𝑑

𝐸

𝑚
cos 𝜃 =

𝐸

𝑚
(− sin 𝜃 + 𝜇𝑑 cos 𝜃)

Igualando la derivada a cero,

𝑑𝑎

𝑑𝜃
= 0

⇐⇒ − sin 𝜃 + 𝜇𝑑 cos 𝜃 = 0
⇐⇒ 𝜇𝑑 cos 𝜃 = sin 𝜃
⇐⇒ 𝜇𝑑 = tan 𝜃

Por ende, el ángulo 𝜃 que maximiza 𝑎(𝜃) es arctan(𝜇𝑑) = arctan(0,4).
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(10) Un bloque de masa 𝑚𝐴, 𝑚𝐵 se deslizan por un plano inclinado, unidos por una
cuerda sin masa, donde 𝑚𝐴 arrastra a 𝑚𝐵. El ángulo de inclinación es 𝜃, hay fricción
con coeficiente 𝜇𝐴 para A y 𝜇𝐵 para 𝐵.

(𝑎) Encuentre una expresión para −→𝑇 la tensión de la cuerda.

(𝑏) Encuentre una expresión para −→𝑎 .

Solución.

(𝑎) Me salteo los cálculos previos. No es difícil determinar que 𝑎𝐴 = 𝑎𝐵 =: 𝑎 y que

𝑚𝐴𝑎 = 𝑇 − 𝑚𝐴𝑔 sin 𝜃 + 𝑅𝐴
𝑚𝐵𝑎 = −𝑇 − 𝑚𝐵𝑔 sin 𝜃 + 𝑅𝐵

con −→
𝑅 la fuerza de rozamiento. No es difícil ver que la componente perpendicular a la

superficie de la gravedad es−𝑚𝑔 sin 𝜃. Por ende, 𝑁 = 𝑚𝑔 sin 𝜃 (contrarresta la gravedad).
Por ende 𝑅 = 𝜇 · 𝑚𝑔 cos 𝜃. Luego

𝑚𝐴𝑎 = 𝑇 − 𝑚𝐴𝑔 sin 𝜃 + 𝜇 · 𝑚𝐴𝑔 cos 𝜃
𝑚𝐵𝑎 = −𝑇 − 𝑚𝐵𝑔 sin 𝜃 + 𝜇 · 𝑚𝐵𝑔 cos 𝜃

Si sumamos ambas ecuaciones, obtenemos
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𝑎(𝑚𝐴 + 𝑚𝐵) = −𝑚𝐴𝑔 sin 𝜃 − 𝑚𝐵𝑔 sin 𝜃 + 𝜇𝐴 · 𝑚𝐴𝑔 cos 𝜃 + 𝜇𝐵 · 𝑚𝐵𝑔 cos 𝜃
= −𝑔 sin 𝜃 [𝑚𝐴 + 𝑚𝐵] + 𝑔 [𝜇𝐴 · 𝑚𝐴 cos 𝜃 + 𝜇𝐵𝑚𝐵 cos 𝜃]
= 𝑔 [− sin 𝜃 (𝑚𝐴 + 𝑚𝐵) + cos (𝜇𝐴𝑚𝐴 − 𝜇𝐵𝑚𝐵)]

⇒ 𝑎 = 𝑔 · cos 𝜃 [𝜇𝐴𝑚𝐴 + 𝜇𝐵𝑚𝐵] − sin 𝜃 [𝑚𝐴 + 𝑚𝐵]
𝑚𝐴 + 𝑚𝐵

= −𝑔 sin 𝜃 + 𝑔 cos 𝜃 [𝜇𝐴𝑚𝐴 + 𝜇𝐵𝑚𝐵]
𝑚𝐴 + 𝑚𝐵

Ahora que sabemos 𝑎, podemos dar:

𝑇 = 𝑚𝐴𝑎 + 𝑚𝐴𝑔 sin 𝜃 − 𝜇 · 𝑚𝐴𝑔 cos 𝜃
= 𝑚𝐴 [𝑎 + 𝑔 sin 𝜃 − 𝜇𝑔 cos 𝜃]
= 𝑚𝐴 [𝑎 + 𝑔 (sin 𝜃 − 𝜇 cos 𝜃)]

Si un alma quiere hacerlo, sustituir 𝑎 por toda la expresión dada antes y simplificar. Lo
considero innecesario.
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Problema 12. Dos resortes de longitudes naturales 𝐿0 = 0,5 m pero con diferentes
constantes elásticas, 𝐾1 = 50 N/m y 𝐾2 = 100 N/m, se encuentran colgados del techo.
Un cuerpo de masa 𝑚 = 2,5 kg que inicialmente está suspendido de ellos es estirado
hacia abajo hasta que la longitud de los resortes se duplica. ¿Cuál es la aceleración −→𝑎
que adquiere el cuerpo cuando se deja libre?

𝐾1 𝐾2

𝑚

Solución. Sobre los cuerpos actúa la fuerza de cada resorte y la gravedad, todas en
dirección estrictamente vertical:

−→
𝐹 =

−→
𝐺 + −→

𝑅1 +
−→
𝑅2 = 𝑚−→𝑎

La fuerza generada por un resorte es −𝑘Δ−→𝑟 con Δ
−→𝑟 el desplazamiento desde la posición

de relajación. En nuestro caso, se nos dice que la posición de relajación es 0,5m, y que
los resortes se estiran hasta 1m hacia abajo. Es decir, en un sistema de coordenadas
donde la altura 𝑦 = 0 se corresponde con el techo, Δ−→𝑟 = (𝑦actual− 𝑦relajamiento) = (−1m−
(−0,5m)) = −1

2m. Como Δ
−→𝑟 es negativo, −𝑘Δ−→𝑟 es positivo y ambos resortes hacen

fuerza hacia arriba, lo cual tiene sentido físico. Además, como [𝑘] = N/m,
[
−𝑘Δ−→𝑟

]
= N,

lo cual también tiene sentido porque es la fuerza.

−→
𝑅1 =

𝐾1
2

m 𝑗 ,
−→
𝑅2 =

𝐾2
2

m 𝑗

En conclusión,

𝑚𝑎 = −𝑚𝑔 + 𝐾1
2

m + 𝐾2
2

m

Sustituyendo,
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𝑚𝑎 = −2,5kg · 9,8m/s2 + 25N + 50N
= −24,5N + 75N
= 50,5N

⇒ 𝑎 =
50,5N
2,5kg

= 20,2m/s2
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(13) Un resorte de constante elástica 𝑘 tiene un extremo fijo y el otro coincide con
el punto 𝑥0 cuando no está deformado. A este extremo se adhiere una masa 𝑚 que se
desplaza hasta 𝑥1, donde se la suelta. 𝑘 = 8N/m, 𝑚 = 2kg, 𝑥0 = 40cm, 𝑥1 = 55cm.

(𝑎) Determine las funciones de movimiento, velocidad y aceleración respecto al tiempo.

(𝑏) Determine el período, la frecuencia, las coordenadas extremas del movimiento, y el
módulo de la velocidad de la masa 𝑚 en el punto de equilibrio.

Solución. (𝑎) Una vez soltado, el resorte realiza un movimiento oscilatorio armónico.
Sabemos que dicho movimiento satisface, con 𝜔 =

√︃
𝑘
𝑚

,

𝑎(𝑡) = −𝜔2(𝑥(𝑡) − 𝑥0), 𝑣(𝑡) = 𝜔𝐴 cos(𝜔𝑡 + 𝜙), 𝑥(𝑡) = 𝑥0 + 𝐴 sin(𝜔𝑡 + 𝜙)

Las condiciones del problema establecen:

1. 𝑥(𝑡 = 0) = 𝑥1

2. 𝑣(𝑡 = 0) = 0

De la segunda condición, obtenemos

𝑣(𝑡 = 0) = 𝜔𝐴 cos(𝜙) = 0 ⇐⇒ 𝐴 = 0 ∨ cos 𝜙 = 0

Si 𝐴 = 0 entonces 𝑥(𝑡 = 0) = 𝑥0, lo cual es absurdo por lo establecido en la condición
(1). Por ende, se debe cumplir cos 𝜙 = 0, es decir 𝜙 = 𝜋

2 o 𝜙 = 3𝜋
2 .

Ahora bien, como 𝑥(𝑡 = 0) = 𝑥1, tenemos

𝑥1 = 𝑥0 + 𝐴 sin(𝜙), 𝜙 ∈
{
𝜋

2
,
3𝜋
2

}
Es decir que 𝑥1 = 𝑥0 + 𝐴 o bien 𝑥1 = 𝑥0 − 𝐴. Si asumimos, sin pérdida de generalidad,
que la constante 𝐴 es positiva, debe cumplirse 𝑥1 = 𝑥0 + 𝐴, pues 𝑥1 > 𝑥0. Es decir que
tenemos 𝜙 = 𝜋/2. Ahora se sigue trivialmente que 𝐴 = 𝑥1 − 𝑥0 = 15cm.

Ahora que hemos encontrado 𝐴 y 𝜙, observamos que

𝜔 =

√︂
𝑘

𝑚
=

√︄
8N/m
2kg

= 2s−1

Entonces

18



𝑥(𝑡) = 40cm + 15cm · sin
(
2s−1 · 𝑡 + 𝜋

2

)
𝑣(𝑡) = 15cm · 2s−1 · cos

(
2s−1 · 𝑡 + 𝜋

2

)
𝑎(𝑡) = −4s−2 · (𝑥(𝑡) − 40cm)

Ahora bien, el coseno desplazado por una fase de 𝜋/2 es el seno, y el seno desplazado
por una fase de 𝜋/2 es el coseno. Podemos simplificar:

𝑥(𝑡) = 40cm + 15cm · cos
(
2s−1 · 𝑡

)
𝑣(𝑡) = 15cm · 2s−1 · sin

(
2s−1 · 𝑡

)
𝑎(𝑡) = −4s−2 · (𝑥(𝑡) − 40cm)

(𝑏) El período es 2𝜋/𝜔 por definición, i.e. 2𝜋/2s = 𝜋/s. El movimiento completa un
ciclo (va de un extremo a otro) cada 𝜋 segundos. La frecuencia es la inversa del período,
𝐹 = 1

𝜋
s, i.e. el sistema hace 1

𝜋
oscilaciones por segundo.

Claramente, 𝑥(𝑡) es máximo cuando cos(2𝑡) = 0, i.e. para 𝑡 = 0s. Es mínimo cuando
cos(2𝑡) = −1, i.e. cuando 2𝑡 = 𝜋 o bien 𝑡 = 𝜋/2s.

Observemos ahora que 𝑥(𝑡0) = 𝑥0 si y solo si cos
(
2s−1 · 𝑡0

)
= 0. Esto se cumple si

(aunque no solo si) 𝑡0 = 𝜋
4 s. Por ende, ese es un instante de tiempo en que la masa está

en el punto de equilibrio. La velocidad en dicho punto es

𝑣

(𝜋
4

)
= 15cm · 2s−1 · cos

(
2s−1 · 𝜋

4
s + 𝜋

2

)
= 0,15m · 2s−1 · cos

(𝜋
2
+ 𝜋

2

)
= 0,3ms−1 · cos (𝜋)
= −0,3m/s

La magnitud de la velocidad es de 0,3m/s.
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(14). Sobre una superficie horizontal se fija un extremo de un resorte que tiene una
longitud natural de 0.5 m y cuya constante elástica es 400 N/m. Al otro extremo se
une un cuerpo de 2 kg de masa que se mueve de forma tal que describe una trayectoria
circular. (a) Si el radio de la circunferencia es de 1 m, ¿Cual sera la velocidad del cuerpo?
(b) Si se duplica la velocidad, ¿Cual deberíaa ser el nuevo radio?

⃗⃗
𝑣

⃗⃗
𝑎

𝜔

⃗⃗
𝑣

⃗⃗
𝑎

𝜔

⃗⃗
𝑣

⃗⃗
𝑎

𝜔

Solución. En un instante dado, sea 𝑖 unitario y paralelo a la aceleración (centrípeto).
Entonces −→𝑎 = 𝑎𝑖, −→𝑅 = 𝑅𝑖, con −→

𝑅 la fuerza del resorte. Se sigue

−→𝑎 𝑚 =
−→
𝑅

⇐⇒ 𝑎 =
𝑅

𝑚

⇐⇒ 𝑎 = 100m/s2

puesto que 𝑅 =

���−→𝑅 ��� = 𝑘/2. En el movimiento circular uniforme, se satisface

𝑎 = 𝑣2/𝑟

Por ende 100m/s2 · 1m = 𝑣2, de lo cual se sigue 𝑣 = 10m/s.

(𝑏) Si la velocidad se duplica, se tiene 𝑣 = 20m/s. Ahora la aceleración, que depende
del resorte, es (en magnitud):
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𝑎 =
𝑘

𝑚

(
𝑟 − 1

2
m

)
Se tiene entonces

𝑘

𝑚

(
𝑟 − 1

2
m

)
=

400m/s2

𝑟

cuya única incógnita es 𝑟 . Obviando las unidades por simplicidad, no es difícil ver que
esta ecuación se reduce a la siguiente cuadrática:

𝑟2 − 1
2
𝑟 − 2 = 0

Encontramos las raíces y nos quedamos sólo con la raíz positive 𝑟0 ≈ 1,686, con lo cual
determinamos 𝑟.
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3. Trabajo y energía (P3)
(1) Una masa pequeña se coloca al final de la cuerda de largo ℓ = 132cm y se suelte
desde el reposo. Sabiendo que 𝜃𝐴 = 5◦, 𝑑 = 66cm:

𝑑 ℓ

𝑇

𝐴

𝐵

𝐶

Determinar:

(𝑎) La velocidad en el punto más bajo de la trayectoria.

(𝑏) El valor de 𝜃𝐶 para la máxima altura que alcanza la masa (punto C).

(𝑐) La tensión de la cuerda en la posición 𝐵.

Solución. Por conservación de la energía, 𝐸 permanece constante tanto cuando lo masa
está en 𝐴 como cuando la masa está en 𝐵. Pero la energía en 𝐴 es estrictamente potencial,
pues no hay velocidad; y la energía en 𝐵 es estrictamente kinética, pues 𝐵 es el punto de
reposo. Por ende,

𝑚𝑔𝐴𝑦 =
1
2
𝑚𝑣2

𝐵

con 𝐴𝑦 la altura de 𝐴 respecto al punto de reposo 𝐵 y 𝑣𝐵 la velocidad de la masa al
atravesar el punto 𝐵. Si determinamos 𝐴𝑦, ya podemos resolver para 𝑣𝐵. La altura 𝐴𝑦
es fácil de determinar si tomamos el triangulo aislado formado por 𝑇, 𝐴 y la líean del
punto 𝐵:
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ℓ
ℓ cos 𝜃𝐴

ℓ sin 𝜃𝐴
𝑋

𝑇

𝐴

Como el largo desde 𝑇 a 𝐵 también es ℓ (la hipotenusa es la soga), se sigue que
𝐴𝑦 = ℓ − ℓ cos 𝜃𝐴 ≈ 0,502cm. Por ende,

𝑚𝑔𝐴𝑦 =
1
2
𝑚𝑣2

𝐵

⇐⇒ 2𝑔(ℓ − ℓ cos 𝜃𝐴) = 𝑣2
𝐵

⇐⇒ 2 · 9,8m/s2 (1,32m − 1,32m · cos 5◦)
⇐⇒ 0,09845077097m2/s2 = 𝑣2

𝐵

⇐⇒ 0,31376865836m/s = 𝑣𝐵

(𝑏) Se nos dice que la altura máxima que alcanza la masa es la de𝐶, con lo cual sabemos
que en𝐶 se detiene y la velocidad de la masa es cero (𝑣𝐶 = 0). Mismo razonamiento que
antes: en 𝐶 la energía es estrictamente potencial, pero en 𝐵 es estrictamente kinética.
Por preservación de la energía,

𝐸𝐵 = 𝐸𝐶 ⇐⇒ 1
2
𝑚𝑣2

𝐵 = 𝑚𝑔𝐶𝑦

con 𝐶𝑦 la altura alcanzada en 𝐶. Pero conocemos 𝑣𝐵. Tomando la aproximación 𝑣𝐵 ≈
0,314, tenemos

𝐶𝑦 =

1
2 (0,314)2(m/s)2

9,8m/s2 = 0,00503040816m ≈ 0,503cm

Para expresar lo que sabemos en un gráfico, tenemos:
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ℓ − 𝑑

ℓ − 𝑑

𝐶𝑦

Δ𝑥 𝐵

𝑇

𝐶

Es claro que si formamos un triángulo rectángulo uniendo𝐶 a la línea 𝐵𝑇 , dicho triángulo
satisface

ℓ − 𝑑

Δ𝑥 = (ℓ − 𝑑) sin 𝜃𝐶

ℓ − 𝑑 − 𝐶𝑦 = (ℓ − 𝑑) cos 𝜃𝐶

𝑋

𝑇

𝐶

La ecuación a la derecha nos permite resolver para 𝜃𝐶 :

ℓ − 𝑑 − 𝐶𝑦 = (ℓ − 𝑑) cos 𝜃𝐶 ⇐⇒ cos 𝜃𝐶 =
ℓ − 𝑑 − 𝐶𝑦
ℓ − 𝑑

⇐⇒ cos 𝜃𝐶 = 1 −
𝐶𝑦

ℓ − 𝑑
⇐⇒ cos 𝜃𝐶 = 1 − 0,503cm

132cm − 66cm
⇐⇒ cos 𝜃𝐶 = 0,99237878787
⇐⇒ 𝜃 = 0,123538758

(𝑐) En el punto 𝐵, la aceleración es constante y la velocidad horizontal. Por ende,
el conjunto de fuerzas −→

𝐹 se describe como 𝐹𝑦 𝑗 . Las únicas fuerzas en acción son la
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gravedad y la tensión, y por lo tanto

𝐹𝑦 = 𝐺𝑦 + 𝑇𝑦

Sabemos que 𝐺𝑦 = −𝑚𝑔. Por ende,

𝑎𝑚 = −𝑚𝑔 + 𝑇𝑦 ⇐⇒ 𝑎 = −𝑔 +
𝑇𝑦

𝑚

Ahora bien, el movimiento de la masa describe un movimiento circular uniforme y por
ende satisface 𝑎 = 𝑣2

𝑟
. En esta situación en particular, 𝑣 se refiere a 𝑣𝐵 la velocidad en el

punto 𝐵, y 𝑟 = ℓ la longitud de la soga. Por ende, se tiene

𝑣2
𝐵

ℓ
= −𝑔 +

𝑇𝑦

𝑚

De esto se sigue

𝑇𝑦 = 𝑚

(
𝑣2
𝐵

ℓ
+ 𝐺

)
Sustituyendo,

𝑇𝑦 = 𝑚

(
0,3142

132
m/s2 + 9,8m/s2

)
= 𝑚(9,80074693939m/s2)

Como [𝑚] = kg, se tiene correctamente [𝑇] = N.
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(2) Un bloque de 20kg es empujado sobre una superficie horizontal por medio de una
fuerza ®𝐹 que forma un ángulo 𝜃 con la misma. La magnitud de la fuerza cuando la masa
está en la posición 𝑥 es

��� ®𝐹 (𝑥)��� = 6𝑥N.

(𝑎) Calcular el trabajo realizado por la fuerza en el intervalo 𝑥 ∈ [10m, 20m].

(𝑏) Calcule la energía cinética del cuerpo en la posición final para 𝜇𝑑 = 0, 𝜇𝑑 = 0,05,
asumiendo que se parte del reposo.

Solución. El trabajo realizado por una fuerza constante sobre un cuerpo −→
𝐹 es 𝑊𝐹 =

−→
𝐹 ·Δ−→𝑟 , con Δ𝑟 el desplazamiento que la fuerza obra sobre el cuerpo. Pero −→

𝐹 en nuestro
caso no es constante. Por ende,

𝑊𝐹 =

∫ 20

10

��� ®𝐹 (𝑥)��� cos 𝜃 𝑑𝑥

= 6N cos 𝜃
∫ 20

10
𝑥 𝑑𝑥

= 6N cos 𝜃
[
𝑥2

2

]20

10
= 6N cos 𝜃 (150m)
= 900 cos 𝜃Nm
= 900 cos 𝜃 J

(𝑏)

Nota. Entiendo que el ejercicio pide desde 𝑥 = 0m hasta 𝑥 = 20m. De cualquier
modo, el procedimeinto es esl mismo para un desplazamiento desde 𝑥 = 10m hasta
𝑥 = 20m.

Recordemos que 𝑊 = Δ𝐾 . Pero la energía cinética en el instante cero es nula y por lo
tanto resulta 𝑊 = 𝐾 𝑓 . Es decir, la energía cinética en el instante final es el trabajo neto
de las fuerzas a lo largo de todo el recorrido:

𝑊 = 𝑊𝐹 +𝑊𝑅

con 𝑊𝑅 el trabajo realizado por la fuerza de rozamiento. El ángulo entre la fuerza de
rozamiento y la dirección del movimiento es de 180 grados, pues se oponen, y por ende
su coseno es −1. Es decir que la fuerza de rozamiento hace un trabajo negativo:
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𝑊𝑅 = −
��� ®𝑅���Δ𝑥

= −𝜇
��� ®𝑁 ��� 20m

= −𝜇𝑚𝑔20m
= −𝜇(20 · 9,8 · 20) (kg · m/s2 · m)
= −𝜇3920 J

Por el mismo razonamiento que antes,

𝑊𝐹 = 6N cos 𝜃
∫ 20

0
𝑥 𝑑𝑥 = 1200 cos 𝜃 J

Por lo tanto,

𝑊 = 1200 cos 𝜃 J − 𝜇3920 J
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3. Una masa de 1 kg se deja deslizar por un plano inclinado 30◦, desde una altura de
1 m. Calcule:

(a) La velocidad del bloque cuando llega al piso, suponiendo que no hay rozamiento.

(b) La velocidad del bloque cuando llega al piso, si el coeficiente de rozamiento es
𝜇𝑑 = 0,3.

(c) Compare el valor obtenido en (a) con el que se obtiene si se deja caer el bloque
desde la misma altura, pero en caída libre.

(d) Para el caso del punto (b) calcule la pérdida de energía.

Solución. (𝑎) La energía en el instante cero es estrictamente potencial y dada por la
gravedad: 𝐸inicial = 𝑚𝑔Δ𝑦. La energía final es estrictamente kinética: 𝐸final =

1
2𝑚𝑣

2
𝑓
. Por

conservación de la energía, estas cantidades son iguales:

1
2
𝑚𝑣2

𝑓 = 𝑚𝑔Δ𝑦

⇐⇒ 𝑣 𝑓 =
√︁

2𝑔Δ𝑦

⇐⇒ 𝑣 𝑓 =
√︁

9,8 · 2 · 1 m/s
⇐⇒ 𝑣 𝑓 = 4,42718872424 m/s

(𝑏) La fuerza de rozamiento es no-conservativa y por ende ya no se satisface 𝐸final =
𝐸inicial, sino 𝐸final < 𝐸inicial (cierta cantidad de energía se disipa en forma de calor,
sonido, etc.)

Pero sabemos que𝑊 = Δ𝐾 , i.e. el trabajo total equivale al cambio en la energía cinética.
Para calcular el trabajo, necesitamos el vector de desplazamiento. La masa se mueve a
lo largo de la pendiente, y por ende la magnitud del desplazamiento es la hipotenusa del
triángulo: ��Δ−→𝑟 �� = 𝐻
Sabemos que el seno es el cateto opuesto sobre la hipotenusa, y sabemos que el cateto
opuesto mide un metro. Por ende,

sin 𝜃 =
1m
𝐻

⇐⇒ 1
2
=

1
𝐻

m ⇐⇒ 𝐻 = 2m
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Habiendo determinado la magnitud del desplazamiento, observamos que las dos fuerzas
en acción son la gravedad y el rozamiento. Por ende,

𝑊 = 𝑊𝐺 +𝑊𝑅

=
−→
𝐺 · Δ−→𝑟 + −→

𝑅 · Δ−→𝑟

=

���−→𝐺 ��� ��Δ−→𝑟 �� cos 60◦ +
���−→𝑅 ��� ��Δ−→𝑟 �� cos 180◦

= 𝑚𝑔 · 2 · 1
2
− 𝜇

���−→𝑁 ��� · 2

La fuerza normal −→𝑁 contrarresta la componente perpendicular a la superficie de la
gravedad. El vector gravedad y el vector unitario perpendicular al plano forman un
ángulo de 30 grados, y por ende

���−→𝑁 ��� = 𝑚𝑔 cos 30◦ = 𝑚𝑔 ·
√

3
2 . Continuando:

𝑊 = 𝑚𝑔 · 2 · 1
2
− 𝜇

���−→𝑁 ��� · 2

= 𝑚𝑔 − 𝜇 · 𝑚𝑔
(√

3
2

)
· 2

= 𝑚𝑔 − 𝜇 · 𝑚𝑔
√

3

= 𝑚𝑔

(
1 − 𝜇

√
3
)

Nota. De ahora en adelante usaremos de memoria que el trabajo de la gravedad es
𝑊 = 𝑚𝑔ℎ con ℎ la altura. Pero está bueno ver la derivación.

Como𝑊 = Δ𝐾 y Δ𝐾 = 𝐾final − 𝐾inicial = 𝐾final,

1
2
𝑚𝑣2

𝑓 = 𝑚𝑔(1 − 𝜇
√

3)

⇐⇒ 𝑣2
𝑓 = 2𝑔

(
1 − 𝜇

√
3
)

⇐⇒ 𝑣 𝑓 =

√︂
2 · 9,8

(
1 − 0,3 ·

√
3
)

m/s

⇐⇒ 𝑣 𝑓 = 3,06847539529 m/s
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Como era esperado, la velocidad se redujo en relación al caso sin rozamiento.

(𝑐) No habrá ninguna diferencia porque ni siquiera cambia el planteamiento: se iguala
la energía inicial (puramente potencial) con la final (puramente cinética), obteniendo lo
mismo.

(𝑑) La energía final es estrictamente cinética y dada por

1
2
𝑚𝑣2

𝑓 =
1
2
· 3,0682 J ≈ 4,71J

La energía inicial es estrictamente potencial:

𝑚𝑔Δ𝑦 = 1 · 9,8 J

La pérdida es casi total:

Δ𝐸 = 9,8J − 4,71J = 5,09J
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4. Una masa de 1 𝑘𝑔 está comprimiendo un resorte de constante 𝑘 = 2 𝑁/𝑚 sobre
una superficie horizontal y sin fricción. El resorte está comprimido 0,3 𝑚 medido
desde su posición de equilibrio, en un momento dado se lo libera. El cuerpo no se
encuentra atado al resorte.

(a) Explicar que sucede luego de ser liberado

(b) Calcule el trabajo realizado por el resorte.

(c) Calcule la velocidad final que alcanza el cuerpo en el momento de ser liberado
por el resorte.

(d) En el momento que el cuerpo se suelta entra en una superficie con rozamiento
de coeficiente dinámico 𝜇𝑑 = 0,2. Explique qué sucede y calcule el trabajo
realizado por la fuerza de roce cuando el cuerpo alcanza la mitad de la
velocidad que traía al momento de soltarse del resorte.

(e) Calcule la distancia recorrida hasta detenerse.

Diagrama del problema.

Solución. (𝑎) En 𝑡 = 0, la energía es totalmente potencial y dada por el resorte en
tensión. Cuando se libera, el resorte se acelera y empieza a ejercer sobre la masa una
aceleración dada por la ley de Hooke. La energía potencial se transforma en energía
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cinética. Cuando el resorte atraviesa 𝑥0, el punto de equilibrio, la aceleración se vuelve
negativa y la velocidad del resorte empieza a decrecer. La masa, sin embargo, sigue
moviéndose a la misma velocidad, pues no percibe desaceleración alguna. Por eso
mismo, justo en ese punto, la masa se empieza a separar del resorte, que queda oscilando
mientras la masa se sigue yendo.

(𝑏) En general, si asumimos que el sistema de coordenadas tiene el punto de equilibrio
𝑥0 = 0, el trabajo realizado por la fuerza de un resorte que mueve un cuerpo de 𝑎 a 𝑏 es:

𝑊 =

∫ 𝑏

𝑎

𝐹 (𝑥) 𝑑𝑥

=

∫ 𝑏

𝑎

−𝑘 (𝑥 − 𝑥0) 𝑑𝑥

= −𝑘
∫ 𝑏

𝑎

𝑥 𝑑𝑥

= −𝑘
[
𝑥2/2

]𝑏
𝑎

= − 𝑘
2

(
𝑏2 − 𝑎2

)
Por ende, en nuestro caso, como el resorte mueve la masa desde 𝑥 = −0,3 hasta 𝑥 = 0
(luego se despegan, como se observó en (𝑎)),

𝑊 = −2
2

N/m
[
0 − (−0,3)2] m2

= −N/m (−0,09) m2

= 0,09 J

(𝑐) La energía cinética inicial es nula y la final es 𝐾 𝑓 =
1
2𝑚𝑣

2
𝑓

donde 𝑣2
𝑓

es lo que se nos
pide descubrir. Como el trabajo equivale al cambio de energía cinética,

𝑊 =
1
2
𝑚𝑣2

𝑓

⇐⇒ 0,09J =
1
2

kg · 𝑣2
𝑓

⇐⇒ 𝑣2
𝑓 = 2kg−1 · 0,09J

⇐⇒ 𝑣 𝑓 =
√︁

0,18m2/s2

⇐⇒ 𝑣 𝑓 = 0,42426406871m/s
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(𝑑) Apenas el objeto se suelta, la fricción de la superficie ejerce una fuerza anti-paralela
a la velocidad, causando una progresiva desaceleración. La única fuerza involucrada
es la de la fricción, así que el trabajo neto será solamente el trabajo de esa fuerza. Se
nos pide determinar el trabajo realizado hasta el momento en que la masa reduce su
velocidad a la mitad. La energía cinética en dicho momento es 1

8𝑚𝑣
2
𝑓
= 1

4𝐾inicial. Por
ende el trabajo es

𝑊𝑟𝑜𝑐𝑒 = Δ𝐾

= 𝐾 𝑓 𝑖𝑛𝑎𝑙 − 𝐾𝑖𝑛𝑖𝑐𝑖𝑎𝑙

=
1
4
𝐾𝑖𝑛𝑖𝑐𝑖𝑎𝑙 − 𝐾𝑖𝑛𝑖𝑐𝑖𝑎𝑙

= −3
4
𝐾𝑖𝑛𝑖𝑐𝑖𝑎𝑙

= −3
4

(
1
2
𝑚𝑣2

𝑓

)
≈ −0,067416J

(𝑑) La aceleración es constante y dada por la fricción: 𝑎𝑚 = −𝜇𝑑
���−→𝑁 ��� = −𝜇𝑑𝑚𝑔.

Calculando:

𝑎(𝑡) = −0,2 · 1kg · 9,8m/s2

1 kg
= −1,96m/s2

Usamos la Ecuación de Torricelli, que permite calcular la distancia recorrida por un
objeto que viaja con aceleración constante sin utilizar variables de tiempo:

𝑣2
𝑓 = 𝑣

2
0 + 2𝑎Δ𝑥

Acá, nuestra 𝑣 𝑓 es cero, y nuestra 𝑣0 es la velocidad al separarse del resorte (que
llamábamos 𝑣 𝑓 , un poco confuso pero what you gonna do):

0 = 0,18(m/s)2 + 2(−1,96)m/s2Δ𝑥

⇐⇒ 3,8m/s2Δ𝑥 = 0,18m2/s2

⇐⇒ Δ𝑥 = 0,04736842105m
⇐⇒ Δ𝑥 ≈ 4,73cm
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6. Un embalaje de masa 𝑚 = 250 𝑘𝑔 está colgado de un cable de largo 𝐿 = 10 𝑚.
Se lo mueve hacia un lado apartándolo de la vertical una longitud 𝑙 = 1 𝑚 y se lo
sostiene allí.

(a) ¿Cuál es la fuerza necesaria para mantener el embalaje en esa posición?

(b) ¿Se hace trabajo para sostenerlo allí?

(c) ¿Se hizo trabajo para moverlo de lado? ¿Cuánto?

(d) ¿La tensión del cable efectúa algún trabajo?

Solución. (𝑎) Observemos que, si 𝜃 es el ángulo entre la vertical y la soga,

sin 𝜃 =
1
𝐿
=

1
10

⇒ 𝜃 = arcsin
(

1
10

)
Asumimos que la fuerza aplicada es horizontal, i.e. −→𝐹 = −𝐹 𝑗 (movimiento hacia la
izquierda). Es fácil ver entonces que

∑︁
𝐹𝑥 = −𝐹 + 𝑇 sin 𝜃∑︁

𝐹𝑦 = −𝑚𝑔 + 𝑇 cos 𝜃

Para que la suma de las fuerzas (en ambas componentes) sea cero, igualamos las ecua-
ciones de arriba a acero y obtenemos un sistema con dos ecuaciones y dos incógnitas (𝐹
y 𝑇):

𝐹 = 𝑇 sin 𝜃
𝑇 cos 𝜃 = 𝑚𝑔

Resolvemos 𝑇 =
𝑚𝑔

cos 𝜃 y sustituimos:

𝐹 =
𝑚𝑔

cos 𝜃
· sin 𝜃 = 𝑚𝑔 tan 𝜃

Como 𝜃 es conocido, solo calculamos:
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𝐹 = 250kg · 9,8m/s2 · tan (arcsin 0,1) = 246,234264739N

(𝑏) No se hace trabajo porque no hay movimiento.

(𝑐) Se hizo trabajo. Sabemos que 𝑊 = Δ𝐾 y es fácil notar que Δ𝐾 es cero. Por ende
𝑊 = 0, o bien

𝑊𝐹 +𝑊𝐺 +𝑊𝑇 = 0

Como la tensión es perpendicular al movimiento, no mueve nada y no hace trabajo:

𝑊𝐹 +𝑊𝐺 = 0 ⇐⇒ 𝑊𝐹 = −𝑊𝐺

La gravedad es una fuerza conservativa. Por lo tanto, el trabajo que realiza es igual al
cambio de su energía potencial:

𝑊𝐺 = −Δ𝑈 = −𝑚𝑔𝑦 𝑓 + 𝑚𝑔𝑦0

En nuestro sistema de coordenadas, el origen coincide con el punto de reposo y por ende
𝑦0 = 0. Queda𝑊𝐺 = −𝑚𝑔𝑦 𝑓 . La altura 𝑦 𝑓 es fácil de derivar geométricamente:

𝑦 𝑓 = 𝐿 − 𝐿 cos 𝜃 = 𝐿 (1 − cos 𝜃)

Por ende,

𝑊𝑔 = −250kg · 9,8m/s2 · 𝐿 (1 − cos 𝜃) = −122,807790888J

Por lo tanto,

𝑊𝐹 = 122,807790888J

(𝑑) No. Por ser perpendicular al movimiento.
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7. Un carro de montaña rusa sin fricción comienza en un punto A con una velocidad 𝑣0.
Asuma que el carro puede ser considerado puntual y que siempre se mantiene en la vía.

(𝑎) Calcule la energía total inicial del sistema.

(𝑏) ¿Con qué velocidades llegar a a los puntos B y C?

(𝑐) Calcule la desaceleración constante que debe aplicarse en D para que se detenga en
E.

Solución. (𝑎) La energía total del sistema en el momento inicial es dada por la energía
potencial de la gravedad afectando al carro y la energía cinética del carro que se mueve
con velocidad 𝑣0:

𝐸0 = 𝐾0 +𝑈0 =
1
2
𝑚𝑣2

0 + 𝑚𝑔ℎ

con ℎ la altura del carro.

(𝑏) Las fuerzas operando en el sistema son conservativas, i.e. no hay disipación. Por
conservación de la energía, se debe cumplir 𝐸𝐵 = 𝐸0. Pero 𝐸𝐵 = 1

2𝑚𝑣
2
𝐵
+𝑚𝑔ℎ. Por ende,

1
2
𝑚𝑣2

𝐵 + 𝑚𝑔ℎ =
1
2
𝑚𝑣2

0 + 𝑚𝑔ℎ ⇐⇒ 𝑣𝐵 = 𝑣0

La altura en el punto 𝐶 es ℎ/2 de acuerdo al gráfico. Se cumple entonces, por la misma
lógica,
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1
2
𝑚𝑣2

𝐶 + 𝑚𝑔ℎ
2
=

1
2
𝑚𝑣2

0 + 𝑚𝑔ℎ

⇐⇒ 𝑣2
𝐶 + 𝑔ℎ = 𝑣2

0 + 2𝑔ℎ
⇐⇒ 𝑣2

𝐶 = 𝑣2
0 + 2𝑔ℎ − 𝑔ℎ

⇐⇒ 𝑣𝐶 =

√︃
𝑣2

0 + 𝑔ℎ

(𝑐) Si igualamos la energía en 𝐷 con la energía inicial, obtenemos:

1
2
𝑚𝑣2

𝐷 =
1
2
𝑚𝑣2

0 + 𝑚𝑔ℎ ⇐⇒ 𝑣2
𝐷 = 𝑣2

0 + 2𝑔ℎ

Deseamos que 𝑣𝐸 = 0. Para una aceleración constante, la ecuación de Torricelli nos da:

𝑣2
𝐸 = 𝑣2

𝐷 + 2𝑎Δ𝑥

con Δ𝑥 = 𝐿 la distancia entre 𝐸 y 𝐷. Se obtiene entonces que si 𝑣𝐸 = 0, se debe tener

2𝑎𝐿 = −𝑣2
𝐷 ⇐⇒ 𝑎 = −

𝑣2
𝐷

2𝐿
⇐⇒ 𝑎 = −

𝑣2
0 + 𝑔ℎ
𝐿
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8. Se tiene una pista constituida en un extremo por un cuadrante de circunferencia de
radio 𝑅 = 1,5 𝑚, como se muestra en la figura. Un bloque de 𝑚 = 1 𝑘𝑔 que inicialmente
estaba en reposo, se suelta en el punto 𝐴; éste desliza sobre la pista alcanzando el punto
𝐵 con una velocidad 𝑣𝐵 = 3,6 𝑚/𝑠 y luego desliza sobre la superficie horizontal una
distancia 𝑑 = 2,7 𝑚 hasta llegar al punto 𝐶 en el cual se detiene.

A

B

𝑅

𝜇𝑑 C

𝑑

(a) ¿Cuál es el coeficiente dinámico de rozamiento sobre la superficie horizontal?

(b) ¿Cuál ha sido el trabajo realizado contra la fuerza de rozamiento mientras el cuerpo
deslizó desde 𝐴 hasta 𝐵 sobre el arco circular?

Solución. (𝑎) Reduzcamos el análisis sólo al intervalo entre 𝐵 y 𝐶. La gravedad y la
normal son perfectamente anti-paralelas y se cancelan. Por ende, la única fuerza que
contribuye es la fricción, y se tiene

−→
𝑅 = 𝑚−→𝑎

⇐⇒ 𝑅𝑥 𝑖 = 𝑚𝑎 𝑖

⇐⇒ 𝑅𝑥 = 𝑚𝑎

⇐⇒ − 𝜇𝑑
���−→𝑁 ��� = 𝑚𝑎

⇐⇒ − 𝜇𝑑𝑚𝑔 = 𝑚𝑎

⇐⇒ − 𝜇𝑑 =
𝑎

𝑔

(𝑅𝑥 es negativo porque la fricción actúa hacia la izquierda). Como la aceleración está
estrictamente determinada por la fuerza de la fricción, y dicha fuerza es constante, la
aceleración es constante. Entonces, por Torricelli,

𝑣2
𝐶 = 𝑣2

𝐵 + 2𝑎Δ𝑥
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Pero asumimos que el objeto se detiene en 𝐶, i.e. 𝑣𝐶 = 0. El ejercicio nos dice que
Δ𝑥 = 𝑑 = 2,7m. Entonces:

− 𝑣2
𝐵 = 2𝑎𝑑

⇐⇒ −
𝑣2
𝐵

2𝑑
= 𝑎

⇐⇒ − (3,6)2

2 · 2,7
= 𝑎

⇐⇒ 𝑎 = −2,4 m/s2

Sustituyendo en la ecuación de 𝜇𝑑 ,

−𝜇𝑑 = −2,4
9,8

⇒ 𝜇𝑑 = 0,24489795918

(𝑏) La gravedad es conservativa. Por ende, el trabajo que realiza equivale en magnitud
al cambio en su energía potencial:

𝑊𝐺 = −Δ𝑈𝐺 = − [𝑈𝐵 −𝑈𝐴] = 𝑈𝐴 −𝑈𝐵

De esto se sigue que

𝑊𝐺 = 𝑚𝑔𝑦𝐴 − 𝑚𝑔𝑦𝐵 = 𝑚𝑔𝑦𝐴 = 𝑚𝑔𝑅 = 14,7J

(No es difícil ver geométricamente que 𝑦𝐴 = 𝑅.) Parte del trabajo de la gravedad se
destina a vencer el rozamiento, parte a otorgar velocidad. Se nos pide cuánto se opone
al rozamiento. Sabemos que

𝑊neto = 𝑊conservativas +𝑊no conservativas = 𝑊𝐺 +𝑊𝑅

También sabemos que 𝑊neto = Δ𝐾 . Pero como el objeto estaba inicialmente en reposo,
Δ𝐾 = 𝐾𝐵 = 1

2𝑚𝑣𝐵. Por ende,
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𝑊𝐺 +𝑊𝑅 = 𝐾𝐵

⇐⇒ 𝑊𝑅 =
1
2
𝑚𝑣2

𝐵 − 14,7J

⇐⇒ 𝑊𝑅 = 6,48J − 14,7J
⇐⇒ 𝑊𝑅 = −8,22J

(Como el rozamiento se opone al movimiento, el trabajo es negativo.) Entonces la fuerza
de la gravedad tiene que “destinar” 8,22J de su propio trabajo a oponerse a la del
rozamiento.
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9. Un cuerpo de masa 𝑚 = 2 𝑘𝑔 cae desde una torre de altura ℎ = 100 𝑚.

(a) ¿Cuál es el impulso que recibe el cuerpo durante el primer segundo?

(b) ¿Y durante el segundo segundo?

(c) ¿Cuál es el impulso total recibido en el tiempo de caída libre 𝑡𝑐𝑙?

Solución. El impulso describe la fuerza aplicada sobre un cuerpo en un intervalo de
tiempo Δ𝑡:

®𝐽 =
∫ 𝑡2

𝑡1

−→
𝐹 (𝑡) 𝑑𝑡

Si la fuerza es constante, se simplifica a ®𝐽 = −→
𝐹Δ𝑡. Cuando el tiempo es desconocido, el

impulso puede expresarse en relación a la velocidad, pues satisface la siguiente relación:

𝐽 = 𝑚(𝑣 𝑓 − 𝑣𝑖)

(𝑎) La única fuerza que actúa sobre el cuerpo es la gravedad. Por ende, en el primer
segundo Δ𝑡 = 1s y 𝐽 =

−→
𝐺 · Δ𝑡 = −𝑚𝑔s 𝑗 . Si nos enfocamos solo en la magnitud,

obtenemos 𝐽 = 𝑚𝑔 · 1s = 19,6Ns.

(𝑏) Durante el segundo segundo es el mismo, pues Δ𝑡 y −→
𝐹 son lo mismo.

(𝑐) La aceleración fácilmente se calcula como −𝑔. La ecuación de tiempo-posición
establece que

Δ𝑦 = 𝑣0𝑦𝑡 +
1
2
𝑎𝑦𝑡

2

Por ende, asumiendo que 𝑣0𝑦 = 0,

−100m =
1
2
𝑎𝑡2 ⇐⇒ 200

𝑔
= 𝑡2 ⇐⇒ 𝑡 = 4,51753951453

que redondeamos como 𝑡 ≈ 4,517. Por ende, el impulso total recibido es

−𝑚𝑔 · 4,517s 𝑗 = −88,5332Ns 𝑗

Alternativamente, podríamos haber calculado 𝑣 𝑓 usando conservación de la energía para
luego usar 𝐽 = 𝑚(𝑣 𝑓 − 𝑣𝑖).
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Solución. Facilitemos las cosas y pongamos un sistema de coordenadas tal que −→𝑣 = 𝑣𝑖,
donde 𝑣 denota componente (no magnitud) del vector velocidad. Se sigue que una de las
partes termina con velocidad 𝑣

3𝑖. La velocidad es constante y por ende la aceleración es
nula. Ninguna fuerza opera sobre los cuerpos.

El momento de un cuerpo se define como 𝑝 = 𝑚𝑣. La ley de la conservación del
momento establece que el momento inicial equivale al final. El momento inicial, antes
de la explosión, es 𝑝𝑖 = 𝑚𝑣. El momento final es la suma del momento de ambos cuerpos:

𝑝 𝑓 =
𝑚

2
𝑣

3
+ 𝑚

2
𝑣?

con 𝑣? la velocidad que no conocemos. Entonces

𝑚𝑣 =
𝑚𝑣

6
+ 𝑚𝑣?

2
⇐⇒ 𝑣 =

𝑣

6
+ 𝑣?

2

Si despejamos, llegamos rápido a 𝑣? =
5𝑣
3 . Como 𝑣? tiene el mismo signo que 𝑣, ambas

partes siguen el mismo sentido. El módulo claramente es 5
3 el de la velocidad original.
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11. Dos bolas 𝐴 y 𝐵 de igual masa 𝑚 chocan de frente. La velocidad de la bola 𝐴 antes
del choque es 𝑣. ¿Cuál debe ser la velocidad de la bola 𝐵 antes del choque para que la
velocidad de 𝐴 después del choque sea nula? Considere que el choque es perfectamente
elástico.

Solución. La respuesta rápida es: en un choque perfectamente elástico entre dos masas,
las mismas se “transfieren” sus respectivas velocidades. Es decir que si 𝐴 está en mo-
vimiento y se choca con 𝐵, y 𝐴 queda en velocidad cero, la velocidad de 𝐵 debía ser
cero.

Más formalmente, “choque perfectamente elástico” significa simplemente choque que
preserva la energía cinética. Antes y después del choque se cumple:

𝐾𝑖 = 𝐾 𝑓

⇐⇒ 1
2
𝑚𝑣𝐴

2
𝑖 +

1
2
𝑚𝑣𝐵

2
𝑖 =

1
2
𝑚𝑣𝐴

2
𝑓 +

1
2
𝑚𝑣𝐵

2
𝑓

⇐⇒ 𝑣𝐴
2
𝑖 + 𝑣𝐵2

𝑖 = 𝑣𝐴
2
𝑓 + 𝑣𝐵

2
𝑓

Si asumimos que la velocidad de 𝐴 después del choque es nula, la ecuación anterior se
reduce a

𝑣𝐴
2
𝑖 + 𝑣𝐵2

𝑖 = 𝑣𝐵
2
𝑓

⇐⇒ 𝑣𝐵
2
𝑖 = 𝑣𝐵

2
𝑓 − 𝑣𝐴

2
𝑖

Por conservación del momento,

𝑚𝑣𝐴𝑖 + 𝑚𝑣𝐵𝑖 = 𝑚𝑣𝐴 𝑓 + 𝑚𝑣𝐵 𝑓
⇐⇒ 𝑣𝐵 𝑓 = 𝑣𝐴𝑖 + 𝑣𝐵𝑖 − 𝑣𝐴 𝑓
⇐⇒ 𝑣𝐵 𝑓 = 𝑣𝐴𝑖 + 𝑣𝐵𝑖

Por sustitución,
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𝑣2
𝐵𝑖

= (𝑣𝐴𝑖 + 𝑣𝐵𝑖)2 − 𝑣2
𝐴𝑖

= 𝑥2 + 2𝑥𝑦 + 𝑦2 − 𝑥2 {𝑥 = 𝑣𝐴𝑖, 𝑦 = 𝑣𝐵𝑖}
⇒ 𝑦2 = 2𝑥𝑦 + 𝑦2

⇐⇒ 2𝑥𝑦 = 0
⇐⇒ 𝑥𝑦 = 0

Es decir, 𝑣𝐴𝑖 · 𝑣𝐵𝑖 = 0. Si asumimos que la bola 𝐴 se mueve, esto solo se cumple si
𝑣𝐵𝑖 = 0.
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12. Una bala de masa 𝑚𝑏 = 10g = 0,01kg se dispara horizontalmente sobre dos bloques
que están en reposo sobre una superficie sin rozamiento. La bala pasa a través del bloque
1 𝑚1 = 1, 2 kg y se incrusta en el bloque 2 𝑚2 = 1, 8kg. Los bloques terminan con
velocidades 𝑣1 = 0, 63 m/s y 𝑣2 = 1, 4 m/s. Despreciando el material removido en el
bloque 1 por la bala, encontrar la velocidad de ésta cuando:

• a) deja el bloque 1

• b) entra al bloque 1.

Solución. Hagamos una convención notacional. Usemos 𝑣 𝑗
𝑖

para denotar la velocidad
del objeto 𝑖 después del choque 𝑗 , con 𝑣0

𝑖
la velocidad del objeto 𝑖 antes del primer

choque. No confundir 𝑣2
𝑖

con “elevar al cuadrado”, significa la velocidad después de que
ha ocurrido el segundo choque!

Por preservación del momento, el momento antes del primer choque equivale al momento
después del primer choque

𝑚𝑏𝑣
0
𝑏 + 𝑚1𝑣

0
1 = 𝑚2𝑣

0
2 = 𝑚𝑏𝑣

1
𝑏 + 𝑚1𝑣

1
1 + 𝑚2𝑣

1
2

Antes del primer choque, la velocidad de ambas masas es nula; después del primer
choque, la velocidad de la segunda masa sigue siendo nula. Simplificando, obtenemos:

𝑚𝑏𝑣
0
𝑏 = 𝑚𝑏𝑣

1
𝑏 + 𝑚1𝑣

1
1

⇐⇒ 𝑣0
𝑏 = 𝑣

1
𝑏 +

𝑚1
𝑚𝑏

𝑣1
1

Esto tiene sentido físico: la velocidad inicial de la bala debería ser mayor a su velocidad
después del primer choque. Esta es una ecuación con dos incógnitas, y debemos pre-
guntarnos cómo encontrar una expresión para 𝑣1

𝑏
. Aplicando preservación del momento

para el tiempo anterior y posterior al segundo choque:

𝑚𝑏𝑣
1
𝑏 + 𝑚1𝑣

1
1 + 𝑚2𝑣

1
2 = 𝑚𝑏𝑣

2
𝑏 + 𝑚1𝑣

2
1 + 𝑚2𝑣

2
2

Sabemos que 𝑣1
2 es nulo porque la segundo masa antes del segundo choque está en

reposo. Además, nos dicen que tras el segundo choque, la bola se incrusta a la segunda
masa, y por ende 𝑣2

𝑏
= 𝑣2

2. Simplificando, obtenemos
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𝑚𝑏𝑣
1
𝑏 + 𝑚1𝑣

1
1 = 𝑚𝑏𝑣

2
2 + 𝑚1𝑣

2
1 + 𝑚2𝑣

2
2

⇐⇒ 𝑚𝑏𝑣
1
𝑏 + 𝑚1𝑣

1
1 = 𝑣2

2 (𝑚𝑏 + 𝑚2) + 𝑚1𝑣
2
1

⇐⇒ 𝑚𝑏𝑣
1
𝑏 = 𝑣

2
2 (𝑚𝑏 + 𝑚2) + 𝑚1𝑣

2
1 − 𝑚1𝑣

1
1

⇐⇒ 𝑚𝑏𝑣
1
𝑏 = 𝑣

2
2 (𝑚𝑏 + 𝑚2) + 𝑚1

(
𝑣2

1 − 𝑣
1
1

)
⇐⇒ 𝑣1

𝑏 =
𝑣2

2 (𝑚𝑏 + 𝑚2) + 𝑚1(𝑣2
1 − 𝑣

1
1)

𝑚𝑏

Ahora bien, 𝑣2
1 = 𝑣1

1, porque la velocidad de la primera masa no cambia después del
segundo choque. Por ende,

𝑣1
𝑏 =

𝑣2
2 (𝑚𝑏 + 𝑚2)

𝑚𝑏

=
1,4m/s (0,01kg + 1,8kg)

0,01kg
= 253,4m/s

Ahora despejamos 𝑣0
𝑏

de su ecuación:

𝑣0
𝑏 = 𝑣

1
𝑏 +

𝑚1
𝑚𝑏

𝑣1
1

= 253,4m/s + 1,2kg
0,01kg

· 0,63m/s

= 329m/s

Hemos así determinado la velocidad de la bala al entrar (𝑣𝑏0) y salir (𝑣1
𝑏
) de la primera

masa.

46



4. Electroestática
1. Determinar el campo eléctrico en un punto a 12cm de una partícula de carga −4 ×
10−9C. ¿Cuál sería el vector fuerza −→

𝐹 que experimentaría un electrón si fuera ubicado
en dicho punto?

Solución. (𝑎) El campo magnético se define como la fuerza que sería percibida por una
“carga unitaria” de referencia. De acuerdo a la Ley de Coulomb, esto es

−→
𝐸 = 𝜅

𝑞

𝑟2 𝑟

con 𝑟 vector unitario que apunta desde la fuente (partícula) hacia el punto donde se
genera el campo. Esto nos da:

−→
𝐸 = 9 × 109 · −4 × 10−9 C

0,122m2 𝑟 = −2500N/C 𝑟

(𝑏) Un electrón tiene carga 𝑞𝑒 = −1,602 × 10−19. La fuerza que experimenta es

−→
𝐸 · 𝑞𝑒 = 2500N/C · 1,620 × 10−19 C 𝑟

= 4005 × 10−19 N 𝑟

= 4,005 × 10−16 N 𝑟
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3. Dos pequeñas esferas idénticas cargadas, cada una con una masa de 30 𝑔, cuelgan en
equilibrio como se muestra en la figura. La longitud de cada cuerda es 𝑙 = 15 𝑐𝑚 y el
ángulo es 𝜃 = 5◦. Encuentre la magnitud de la carga sobre cada esfera.

a

L L

q q

𝜃 𝜃

Solución. Sobre cada carga, actúan la gravedad, la tensión de la soga, y el campo eléctrico
generado por la otra carga. Tomemos la solo la carga izquierda; a partir de ahora 𝑞 se
refiere solo a ella. Entonces

∑︁−→
𝐹 = 0

⇐⇒ −→
𝐹 + −→

𝑇 + −→
𝐺 = 0

⇐⇒ 𝑖 (𝑇𝑥 + 𝐸𝑥) + 𝑗 (𝐺𝑦 + 𝑇𝑦) = 0

⇐⇒
{
𝑇𝑥 + 𝐸𝑥 = 0
𝑇𝑦 + 𝐺𝑦 = 0

⇐⇒
{
𝑇 sin 𝜃 − 𝜅 𝑞

2

𝑟2 = 0
𝑇 cos 𝜃 − 𝑚𝑔 = 0

Entonces 𝑇 =
𝑚𝑔

cos 𝜃 . Sustituyendo en la primera ecuación,

𝑚𝑔

cos 𝜃
sin 𝜃 − 𝜅 𝑞

2

𝑟2 = 0

⇐⇒ 𝑚𝑔 tan 𝜃 = 𝜅
𝑞2

𝑟2

⇐⇒ 𝑚𝑔 tan 𝜃
𝜅

· 𝑟2 = 𝑞2

⇐⇒ 𝑞2 = 4𝜋𝜖0 · 𝑚𝑔 tan 𝜃 · 𝑟2

⇐⇒ 𝑞 =
√︁

4𝜋𝜖0 · 𝑚𝑔 tan 𝜃 · 𝑟
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donde 𝑟 = 2𝑎. Pero debería ser obvio que 𝑎 = 𝐿 sin 𝜃. Por ende 𝑟 = 2 · 0,15m · sin 𝜃.
Obtenemos, obviando unidades:

𝑞 =
√︁

4𝜋 · 8,85 · 10−12 · 0,03 · 9,8 · tan(5◦) · 2 · 0,15 sin(5◦)
=

√︁
4𝜋 · 8,85 · 0,03 · 9,8 · tan(5◦) · 0,3 sin(5◦) × 10−6

= 0,04422250979 × 10−6

= 4,422250979 × 10−8C

Obviamente, la carga de la otra esfera es la misma por simetría.
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4. Cuatro cargas de igual magnitud 𝑞 = 3 × 10−6 𝐶 están fijas en los vértices de un
cuadrado de 0,25 𝑚 de lado, de manera tal que en los vértices de la derecha las
cargas son negativas y las de los vértices de la izquierda son positivas.

(a) Determinar el campo eléctrico ®𝐸 en el medio del cuadrado.

(b) Explique qué le sucedería a una carga positiva, de la misma magnitud de la
de los vértices, si se ubicara en el centro del cuadrado.

(c) Explicar qué sucedería si una de las cargas negativas es apartada hacia afuera
de su posición en la dirección de la diagonal del cuadrado.

(𝑎) Debería ser claro que las cargas positivas, por ser perpendiculares y repeler una carga
positiva, generan un campo con dirección 𝑖. Mismo razonamiento para las negativas, que
son perpendiculares y atractivas. Por ende, el campo eléctrico total tiene dirección 𝑖.
Esto ya nos dice que las componentes verticales de las fuerzas se cancelan a la hora de
generar un campo en el centro. Solo calculamos las componentes horizontales.

La distancia al centro satisface 2𝑟 =
√︃

1
4

2 + 1
4

2
=

√︃
2
16 =

√︃
1
8 . ∴ 𝑟 = 1

2

√
2−3.

Todos los campos tienen igual magnitud:
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𝜅
𝑞

𝑟2 = 8,99 × 109 · 3 × 10−6

1
4 · 2−3

= 8,99 · 3 · 4 · 8 · 106

= 863,04 103N/C
≈ 8,63 × 105 N/C

La proyección sobre 𝑖 será la misma para todas las cargas (es fácil observarlo geométri-
camente):

𝐸𝑥 = 8,63 × 105N / C · cos
𝜋

4

=

√
2

2
· 8,63 × 105 N/C

≈ 6,102 × 105 N/C

Por ende, el campo total será de magnitud

4 · 6,102 × 105 N/C = 24,408 × 105 N/C

(𝑏) La carga sería repelida horizontalmente hacia la derecha (𝑖) debido a la repulsión de
las cargas positivas y la atracción de las negativas. Al llegar a la línea que une las dos
cargas negativas, la partícula tendría su velocidad máxima. Debido a la inercia, cruzaría
esta línea, pero inmediatamente sentiría una fuerza neta atractiva hacia la izquierda
(restauradora) mucho más intensa que la repulsión lejana de las positivas. Por lo tanto,
oscilaría alrededor del punto medio del lado derecho del cuadrado (el punto medio entre
las dos cargas negativas).

(𝑐) Estaríamos afectando la magnitud de la fuerza que dicha carga haría. Digamos que
es la carga superior derecha la que se aleja. La magnitud de su efecto ya no equivaldría a
la magnitud del efecto de la carga inferior derecha. Por ende, al situar una carga positiva
en el centro del cuadrado, la misma se iría hacia la derecha y un poco hacia abajo, pues
la carga inferior derecha la atraería con más fuerza que la superior derecha.
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5. Las cargas 𝑞1 y 𝑞2 se ubican en el eje 𝑥 a distancias 𝑎 y 𝑏 del origen, como se muestra
en la figura.

(a) Encuentre el campo eléctrico ®𝐸 resultante en el punto 𝑝, que está sobre el eje 𝑦.

(b) Evalúe el campo eléctrico en el punto 𝑝 en el caso especial de que |𝑞1 | = |𝑞2 | y
𝑎 = 𝑏.

𝑥

𝑦

𝑟1
𝑟2

𝑝

𝑎 𝑏

𝛼 𝛽
+
+𝑞1

-
−𝑞2

Solución. (𝑎) Sea 𝑟1 el vector unitario que apunta desde 𝑞1 a 𝑃 (dirección del primer
campo), 𝑟2 el que apunta desde 𝑃 a 𝑞2 (dirección del segundo campo). Es claro que:

𝑟1 = cos𝛼 𝑖 + sin𝛼 𝑗,
𝑟2 = cos 𝛽 𝑖 − sin 𝛽 𝑗

Los campos eléctricos individuales son:

®𝐸1 = 𝜅
|𝑞1 |
𝑟2

1
𝑟1, ®𝐸2 = 𝜅

|𝑞2 |
𝑟2

2
𝑟2

El campo resultante es la suma vectorial directa:

®𝐸𝑡𝑜𝑡𝑎𝑙 = ®𝐸1 + ®𝐸2

= 𝜅
|𝑞1 |
𝑟2

1
𝑟1 + 𝜅

|𝑞2 |
𝑟2

2
𝑟2

= 𝜅

[(
|𝑞1 |
𝑟2

1
cos𝛼 + |𝑞2 |

𝑟2
2

cos 𝛽

)
𝑖 +

(
|𝑞1 |
𝑟2

1
sin𝛼 − |𝑞2 |

𝑟2
2

sin 𝛽

)
𝑗

]
52



donde el último paso es la suma componente a componente de ambos vectores.

(𝑏) Asumamos que 𝑎 = 𝑏 y que las cargas son de igual magnitud. Como 𝑎 = 𝑏 se sigue
que 𝛼 = 𝛽 y por ende que 𝑟1 = 𝑟2. Usemos 𝜑 := 𝛼 = 𝛽, 𝑟 := 𝑟1 = 𝑟2, |𝑞 | := |𝑞1 | = |𝑞2 |.
Obtenemos:

−→
𝐸 total = 𝜅

[
|𝑞 |
𝑟2 cos 𝜑 + |𝑞 |

𝑟2 cos 𝜑
]
𝑖 + 𝜅

[
|𝑞 |
𝑟2 sin 𝜑 + |𝑞 |

𝑟2 − sin 𝜑
]
𝑗

=
𝜅 · 2 cos 𝜑 · |𝑞 |

𝑟2 𝑖

donde es del todo esperable físicamente que los componentes 𝑗 se cancelen. Podemos
expresar cos 𝜑 = Adj/Hip = 𝑎/𝑟.

®𝐸total =
2𝜅 |𝑞 |
𝑟2

(𝑎
𝑟

)
𝑖 =

2𝜅 |𝑞 |𝑎
𝑟3 𝑖

No puede simplificarse más.
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6. Dos placas paralelas están separadas por una distancia de 𝑥 = 5 𝑐𝑚. Las placas tienen
la misma carga pero de signo opuesto que crean un campo eléctrico entre las placas que
puede ser considerado uniforme y perpendicular a las mismas. Los núcleos de He se
denominan también “partículas alfa”. Una de ellas, 𝑞 = 3,2×10−19𝐶,𝑚 = 6,68×10−27 𝑔,
se suelta desde la placa positiva y golpea la placa negativa 2 × 10−6 𝑠 después.

(a) Determinar el campo eléctrico entre las placas.

(b) Calcule el trabajo realizado por el campo para trasladar la partícula alfa de una
placa a otra.

(c) ¿Cuál es la diferencia de potencial entre las placas?

Diagrama.

Solución. (𝑎) Asumimos que la única fuerza que afecta a la partícula es la del campo
eléctrico, i.e. despreciamos la gravedad. Notar que de esto se sigue que la aceleración es
constante.

Se nos dice que la partícula tarda 2 × 10−6 segundos en recorrer 5 centímetros en
dirección estrictamente vertical. Usando la ecuación de tiempo y posición para una
aceleración constante:
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Δ𝑦 = 𝑣0𝑡 +
1
2
𝑎𝑡2

donde asumismo que 𝑣0 = 0 (el instante justo antes de soltarse). Por ende,

5cm =
1
2
𝑎 · (2 × 10−6 s)2

⇐⇒ 𝑎 = 2 · 0,05m
(2 × 10−6s)2

⇐⇒ 𝑎 = 2 · 0,05m
4 · 10−12 s2

⇐⇒ 𝑎 = 0,025 · 1012 m/s2

⇐⇒ 𝑎 = 2,5 × 1010 m/s2

Por segunda ley de Newton, la suma de las fuerzas es la masa por la aceleración. Pero la
única fuerza involucrada es −→𝐸 𝑞, la fuerza experimentada por la carga en el campo. Por
ende,

−→
𝐸 𝑞 = 𝑚−→𝑎

= −6,68 × 10−30 kg · 2,5 × 1010 m/s2 𝑗

= −16,7 × 10−20N

donde 6,68 × 10−30 kg = 6,68 × 10−27 g y el signo menos aparece porque el vector
aceleración va en dirección − 𝑗 (de arriba hacia abajo). Con esto ya podemos determinar
el campo:

𝐸𝑞 = 16,7 × 10−20 N

⇐⇒ 𝐸 =
16,7 × 10−20

3,2 × 10−19 N/C

≈ 5,219 × 10−1 N/C
= 0,5219 N/C

(𝑏) Ya establecimos que la fuerza ejercida por el campo sobre la partícula es −→
𝐸 𝑞, y

hemos calculado su valor numérico. Este vector es paralelo al desplazamiento Δ
−→𝑦 . Por

ende:
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𝑊 =
−→
𝐸 𝑞 · Δ−→𝑦

=

���−→𝐸 𝑞��� · 0,05m cos(0)

= 16,7 × 10−20 N · 0,05m
= 0,835 × 10−20 J
= 8,35 × 10−21 J

(𝑐) Primero, recordamos la relación entre el trabajo realizado por el campo eléctrico
(𝑊campo) y la energía potencial eléctrica (𝑈). Dado que la fuerza eléctrica es conservativa,
el trabajo realizado por el campo ocurre a expensas de la energía potencial del sistema:

Δ𝑈 = −𝑊campo

Esto significa que si el campo acelera la partícula (realiza trabajo positivo), la energía
potencial del sistema disminuye.

Recordemos que la diferencia de potencial elétrico es el cambio en la energía potencial
por unidad de carga. Es una propiedad del campo mismo, independiente de la carga en
cuestión (da lo mismo para toda 𝑞, notar que Δ𝑈 depende de la 𝑞 elegida).

Δ𝑉 =
Δ𝑈

𝑞

Sustituyendo la primera ecuación en la segunda:

Δ𝑉 =
−𝑊campo

𝑞

Usando el valor del trabajo obtenido en el inciso anterior:

Δ𝑉 = −8,35 × 10−21J
3,2 × 10−19C

= −2,609 × 10−2J/C ≈ −2,61 × 10−2V

Físicamente, el signo negativo nos indica que la partícula se desplazó hacia una región
de menor potencial eléctrico, tal como una roca cae hacia una menor altura.
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7. Un electrón entra en una región de campo eléctrico uniforme (vea la figura) con una
velocidad 𝑣 = 3 × 106 𝑚/𝑠 y 𝐸 = 200 𝑁/𝐶. La longitud horizontal de los platos es
𝐿 = 0,1 𝑚 y su separación es ℎ = 1,5 𝑐𝑚.

(a) Encuentre la aceleración del electrón mientras esta en el campo eléctrico.

(b) Asuma que la posición vertical del electrón al entrar al campo es 𝑦 = 0, ¿logra
abandonar la región de campo eléctrico? En caso de abandonarlo calcule el tiempo
en el cual lo hace, caso contrario calcule la posición en la cual impacta.

Diagrama del problema.

Solución. (𝑎) Despreciamos la fuerza de gravedad. La única fuerza que actúa sobre la
carga entonces es la ocasionada por el campo, cuya magnitud es conocida. Observamos
que −→𝑎 = −𝑎 𝑗 , es decir que la aceleración es estrictamente vertical, constante, y va
“hacia” la placa con carga positiva.

𝑞𝐸 = 𝑚𝑎

⇐⇒ 𝑎 =
𝑞𝐸

𝑚

⇐⇒ 𝑎 =
1,602 × 10−19C · 200N/C

9,11 × 10−31kg
𝑎 ≈ 35,17 × 1012 m/s2

∴ −→𝑎 = −35,17 × 1012m/s2 𝑗 .
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(𝑏) Ya dĳimos que la aceleración es constante. Y como es estrictamente vertical, no afecta
la velocidad horizontal inicial 𝑣 = 3 × 106m/s. Es decir que, visto unidimensionalmente
(solo eje 𝑥), el electrón recorre la distancia horizontal Δ𝑥 = 𝐿 = 0,1m en una cantidad
de tiempo dada por

Δ𝑥 = 𝑣0𝑥𝑡 +
1
2
𝑎𝑥𝑡

2

⇐⇒ Δ𝑥 = 𝑣0𝑥𝑡 + 0 {No hay ac. horizontal}
⇐⇒ 0,1 = 3 × 106𝑡

⇐⇒ 𝑡 =
0,1

3 × 106

⇐⇒ 𝑡 =
1
10

· 1
3
· 10−6

⇐⇒ 3,33 × 10−8s

Usaremos 𝑡𝑥 para denotar esta cantidad, pues es el tiempo que se tarda en recorrer toda la
distancia horizontal de las placas. Usando la misma lógica, podemos calcularel tiempo
que toma recorrer la distancia vertical entre las placas, notando que la velocidad vertical
inicial es cero:

Δ𝑦 = 𝑣0𝑦𝑡 +
1
2
𝑎𝑦𝑡

2

⇐⇒ 0,015 =
1
2
· 35,17 × 1012𝑡2

⇐⇒ 𝑡 =

√︂
2 · 0,015

35,17
× 10−6

⇐⇒ 𝑡 = 0,02920615886 × 10−6

𝑡 ≈ 0,029 × 10−6

𝑡 ≈ 2,9 × 10−8 s

Denotemos a este tiempo 𝑡𝑦. Como 𝑡𝑦 < 𝑡𝑥 , el electrón no logra abandonar la región del
campo. Calculemos la distancia recorrida hasta el momento en que impacta con la placa
positiva:
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Δ𝑥 = 𝑣0𝑥𝑡𝑦

⇐⇒ Δ𝑥 = 3 × 106m/s · 2,9 × 10−8 s
⇐⇒ Δ𝑥 = 8,7 × 10−2 m
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9. Considere una carga puntual 𝑞 = 1,5 × 10−8𝐶.

(a) ¿Cuál es el radio de la superficie equipotencial que posee 30𝑉?

(b) Las superficies equipotenciales cuyos potenciales difieren en una cantidad cons-
tante de 1𝑉 , ¿están equiespaciadas en la dirección radial?.

Solución. (𝑎) El voltaje a una distancia 𝑟 la diferencia de potencial por unidad de carga:

𝑉 = 𝜅
𝑞

𝑟

𝐸, 𝜅 y 𝑞 son conocidos. Seteamos 𝑉 = 30 y obtenemos (obviando unidades):

30 =
1

4𝜋𝜖0
1,5 × 10−8

𝑟

⇐⇒ 𝑟 =
8,99 × 109 · 1,5 × 10−8

30

⇐⇒ 𝑟 =
13,48

30
× 10

⇐⇒ 𝑟 ≈ 4,493m

que está en metros.

(𝑏) No. 𝑉 es inversamente proporcional al radio (por definición). Es decir, 𝑉 (𝑟) no es
lineal respectco de 𝑟. Cuanto más distante un radio 𝑟1 de la carga, más lejano tendrá que
ser un punto 𝑟2 para poder generar una diferencia de 1V respecto a 𝑟1.
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10. Considere dos cargas puntuales 𝑞 y 3𝑞 ubicadas a una distancia 𝑑 = 1𝑚. Encuentre
la posición de los puntos sobre el eje que une las cargas en donde:

(a) 𝑉 = 0,

(b) | ®𝐸 | = 0.

Solución. El potencial generado por una carga 𝑞 en un punto a una distancia 𝑟 es𝑉 = 𝜅
𝑞

𝑟
.

Por el principio de superposición, el potencial generado por las dos cargas en un punto
intermedio entre ambas es

𝑉total = 𝜅
𝑞

𝑟
+ 𝜅 3𝑞

1 − 𝑟 = 𝜅𝑞

(
1
𝑟
+ 3

1 − 𝑟

)
Esto es cero si y solo si

1
𝑟
+ 3

1 − 𝑟 = 0

⇐⇒ 𝑟 + 1 − 𝑟
3

= 0

⇐⇒ 3𝑟 + 1 − 𝑟 = 0
⇐⇒ 2𝑟 + 1 = 0

⇐⇒ 𝑟 = −1
2

lo cual es absurdo dado que 𝑟 es una distancia. Por ende, no existe ningún punto entre
ambas cargas que haga que el voltaje sea cero.

(𝑏) Las dos cargas son de igual signo. Por ende, independientemente de si son positivas
o negativas, crearán fuerzas contrarias sobre cualquier carga que se ubique entre ellas.
Asumimos entonces sin pérdida de generalidad que ambas cargas son positivas.

−→
𝐸 (𝑟) = 𝜅 𝑞

𝑟2 𝑖 − 𝜅
3𝑞

(1 − 𝑟)2 𝑖

= 𝜅𝑞

(
1
𝑟2 − 3

(1 − 𝑟)2

)
𝑖

Esto nos da la magnitud del vector:
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𝐸 = 0

⇐⇒ 1
𝑟2 − 3

(1 − 𝑟)2 = 0

⇐⇒ 1
𝑟2 =

3
(1 − 𝑟)2

⇐⇒ (1 − 𝑟)2 = 3𝑟2

⇐⇒ 𝑟2 − 2𝑟 + 1 = 3𝑟2

⇐⇒ − 2𝑟2 − 2𝑟 + 1 = 0

⇐⇒ 𝑟2 + 𝑟 − 1
2
= 0

⇐⇒ 𝑟 =
−1 ±

√
3

2
⇐⇒ 𝑟 ≈ 0,366m

ignorando la raíz negativa.
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11. Utilizar la ley de Gauss, para determinar el campo eléctrico en los siguientes casos:

1. Carga puntual 𝑞.

2. Cascarón esférico delgado y conductor de radio 𝑅 y carga 𝑞 uniforme.

3. Esfera de radio 𝑅 con carga uniforme 𝑞.

4. Línea infinita de carga con una densidad lineal de carga.

5. Lámina infinita de carga con una densidad superficial de carga.

Solución.

(𝑏) La ley de Gauss garantiza Φ𝐸 =
∮ −→
𝐸 · 𝑑−→𝐴 = 𝑞enc/𝜖0 donde 𝑑

−→
𝐴 son diferenciales de

área sobre una superficie Gaussiana. Imaginemos que encerramos el cascarón esférico
de radio 𝑟𝑐 en una circunferencia de radio 𝑟. Como el vector normal a la circunferencia
de radio 𝑟 es paralelo al vector de campo emitido por la carga, el producto punto de la
Ley de Gauss se simplifica como sigue:

𝐸

∮
𝑑𝐴 =

𝑞enc
𝜖0

⇐⇒ 𝐸 · 𝐴 =
𝑞enc
𝜖0

⇐⇒ 𝐸 =
𝑞enc
𝜖0𝐴

donde 𝐴 es el área de la circunferencia de radio 𝑟 que imaginamos rodea al cascarón.
Como el cascarón es conductor, la carga dentro del mismo se distribuye en la cara externa
de su superficie. Entonces hay dos casos.

Si 𝑟 < 𝑟𝑐, i.e. si la circunferencia imaginaria está “dentro” del cascarón, no contiene
carga alguna y 𝑞enc = 0. Si 𝑟 ≥ 𝑟𝑐, 𝑞enc y por ende el campo resulta

𝐸 =
𝑞

𝜖0𝐴
=

𝑞

𝜖0 · 4𝜋𝑟2 = 𝜅
𝑞

𝑟2

coincidiendo con la Ley de Coulomb.

(𝑐) No nos dicen que la esfera sea conductora. Por ende, asumimos que no lo es y que la
carga se distribuye de manera uniforme en su volumen (no, como en el caso contrario,
en la cara externa de la superficie). La fórmula nos va a quedar igual:

𝐸 =
𝑞enc
𝜖0𝐴
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donde 𝐴 = 𝐴(𝑟) depende del radio de la superficie Gaussiana que estemos tomando. El
caso fácil es 𝑟 > 𝑅, i.e. la superficie Gaussiana captura toda la esfera y por ende toda la
carga. Aquí

𝐸 =
𝑞

𝜖04𝜋𝑟2 = 𝜅
𝑞

𝑟2

pues 2𝜋𝑟2 es el área de la esfera. Pero si 𝑟 < 𝑅, nuestra superficie imaginaria solo captura
una fracción de la carga total. Si 𝑞 es la carga total, y 4

3𝜋𝑅
3, la fracción de volumen

capturada por una esfera de radio 𝑟 < 𝑅 concéntrica es

4
3𝜋𝑟

3

4
3𝜋𝑅

3
=
𝑟3

𝑅3

la proporción del radio de la esfera más pequeña respecto al radio de la más grande. Por
lo tanto, la carga encerrada será 𝑟3

𝑅3 𝑞, es decir

𝐸 =
𝑟3

𝑅3
𝑞

𝐴𝜖0
=
𝑟3

𝑅3
𝑞

4𝜋𝑟2𝜖0
= 𝜅

𝑟𝑞

𝑅3

Acá se hace claro que el campo aumenta linealmente con 𝑟 (lo cual tiene sentido físico
pues la distribución de la carga es uniforme).

(𝑑) Usemos 𝜆 = carga/longitud para denotar la cantidad de carga en una región limitad
de la línea. Entonces 𝑞 = 𝜆𝐿 es la carga por unidad de longitud. El campo alrededor de
la línea tiene dirección radial, i.e. es perpendicular a la línea. Imaginamos una superficie
Gaussiana cilíndrica de radio 𝑟 alrededor de la línea (un envoltorio, si se quiere).

Si “partimos” el cilindro tomando sólo un tramo de longitud 𝐿, el área de dicha región
estará compuesta por la cara superior, la cara inferior, y el cuerpo longitudinal del
cilindro. Pero en las caras superior e inferior, el vector normal al área es perpendicular
al campo, y por ende el producto cruz −→𝐸 𝑑−→𝐴 es cero. Es decir que en la integral

∮ −→
𝐸 𝑑

−→
𝐴

solo influye el área longitudinal. Por ende,

Φ =

∮ −→
𝐸 𝑑

−→
𝐴

= 𝐸

∮
𝑑𝐴

= 𝐸 · (𝐿2𝜋𝑟)
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pues 2𝜋𝑟 es el área de un cilindro. Por ley de Gauss, se cumple

𝐸 (𝐿2𝜋𝑟) = 𝑞encerrada
𝜖0

Pero ya definimos 𝑞encerrada como 𝜆𝐿. Por ende, obtenemos

𝐸 (𝐿2𝜋𝑟) = 𝜆𝐿
𝜖0

⇐⇒ 𝐸 =
𝜆𝐿

𝜖0 · 2𝜋 · 𝐿 · 𝑟

⇐⇒ 𝐸 = 𝜅
𝜆

𝑟

(𝑒) Para una lámina infinita, digamos que un área cuadrada de la misma contiene una
carga𝜎 =

𝑄

𝐿2 (carga por longitud al cuadrado). Luego la carga por pedazo de área es𝜎𝐿2.
Aquí, el área total es dos veces el área de una cara de la lámina. Usando razonamientos
que deberían ya ser familiares,

Φ = 𝐸

∮
𝑑𝐴

= 𝐸 (2 · 𝐿2)

Por Ley de Gauss,

𝐸

(
2𝐿2

)
=
𝑞enc
𝜖0

=
𝜎 · 𝐿2

𝜖0 · 2𝐿2

=
𝜎

2𝜖0
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12. En la figura se muestran cuatro superficies cerradas, 𝑆1 a 𝑆4, así como las cargas
−2𝑄, 𝑄 y −𝑄. Las líneas representan las intersecciones de las superficies con el plano
de la página. Determine el flujo eléctrico a través de cada superficie.

𝑆3

𝑆1

𝑆2

𝑆4
-2Q

+Q

-Q

Solución. Es una pavada con la Ley de Gauss.
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13. Una carga 𝑞 = 170 𝜇𝐶 está en el centro de un cubo de lado ℓ = 80 𝑐𝑚.

(a) Encuentre el flujo eléctrico a través de toda la superficie del cubo.

(b) Encuentre el flujo eléctrico a través de cada cara del cubo.

(c) ¿Cambiaría sus respuestas anteriores si la carga no estuviera en el centro? De una
explicación.

Solución. (𝑎) El cubo contiene una única carga 𝑞. Por Ley de Gauss, el flujo eléctrico
es 𝑞

𝜖0
. No lo voy a calcular porque estoy cansado.

(𝑏) Si la carga está en el centro, el flujo total se reparte equitativamente entre las 6 caras
idénticas.

Φcara =
1
6
Φtotal =

𝑞

6𝜖0

No lo voy a calcular porque estoy cansado.

(𝑐) El flujo total no cambiaría, ese es el punto de la ley de Gauss: no depende de la
posición de la carga ni la superficie que la encierra. Pero el flujo por cara si cambiaría.
Si acercamos la carga a una cara particular del cubo, dicha cara tendrá un flujo mayor y
la cara contraria un flujo menor. Por ende, Φcara no sería 1

6Φtotal.
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14. Una carga 𝑞 = 10 𝜇𝐶 se ubica en el origen de un sistema de coordenadas en forma
coincidente con el vértice de un cubo, tres de cuyas aristas coinciden con los ejes 𝑥, 𝑦,
𝑧. El lado del cubo es 𝑙 = 0,10𝑚. Calcule el flujo del campo ®𝐸 a través de cada una de
las caras del cubo. Si 𝑙 fuera igual a 0,20𝑚, ¿qué pasaría con el valor de dicho flujo?.

Diagrama.

Solución. Vamos a calcular para una longitud ℓ general y matar dos pájaros de un tiro.

Sea Φ el flujo total que sale del cubo. Debería ser claro que las tres caras que tocan la
carga no son atravesadas por el campo eléctrico, pues el mismo es paralelo a ellas. No
reciban carga en absoluto. Las otras tres caras son perfectamente simétricas en relación
a la carga y por ende reciben el mismo flujo. Por ende, el flujo total se divide en esas tres
caras:

Φ(cara) =
{

0 la carga toca la cara
Φ
3

𝑐.𝑐.

Por ende, sólo queda determinar Φ el flujo total.

Imaginemos que agregamos cubos a nuestro cubo inicial de manera tal que formen un
súper-cubo con la carga en el centro. Viendo el diagrama, sería añadir un cubo “a la
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izquierda” y dos cubos “atrás”, como rodeando el eje 𝑧, y luego añadir un cubo debajo
de cada uno de los cubos ya existentes. En total, nuestro súper-cubo está formado por
ocho cubos; la carga está en el centro de ellos y por ende reciben el flujo eléctrico
equitativamente. Es decir, Φ = 1

8Φ𝑆 con Φ𝑆 el flujo del super cubo.

Lo bonito de la Ley de Gauss es que el flujo eléctrico en este super cubo es una pavada
y no depende ni siquiera del tamaño extendido del mismo. Es

Φ𝑆 =
𝑞

𝜖0

Por ende Φ =
𝑞

8𝜖0 . Por ende, el flujo total por cada cara del cubo original es

Φ(cara) =
{

0 la carga toca la cara
Φ
3 𝑐.𝑐.

=

{
0 la carga toca la cara
𝑞

24𝜖0

que se puede calcular. De paso vimos que el resultado es independiente de ℓ.
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5. Circuitos (P5)
1. Para el sistema mostrado en la figura que consiste de un capacitor, una batería y una
llave, comente cualitativamente que sucederá al cerrar la llave. ¿Cómo se distribuyen
las cargas en el capacitor, es decir, cual plato queda con carga positiva y cual con
negativa? ¿En qué se transforma y dónde se almacena la energía química de la batería
(despreciando la disipación en forma de calor)?

𝐶

Llave

Δ𝑉

(𝑎)

Las cargas negativas son:

• Atraídas desde la placa izquierda del capacitor hacia la terminal positiva de
la batería

• Repelidas por la terminal negativa de la batería hacia la placa derecha del
capacitor.

Las cargas positivas son:

• Repelidas por la terminal positiva de la batería hacia la placa izquierda del
capacitor

• Atraídas desde la placa derecha del capacitor hacia la terminal negativa de
la batería

El resultado de esto es una acumulación de carga positiva en la placa izquierda del
capacitor, y una acumulación de carga negativa en la placa derecha del capacitor.

(𝑏) La energía química de la batería se transforma en energía eléctrica potencial, alma-
cenada en el campo eléctrico entre las dos placas del capacitor. Dicha energía obedec la
fórmula
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𝑈 =
1
2
𝐶 (Δ𝑉)2
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2. Para el sistema de capacitores (de arriba hacia abajo y de izquierda a derecha 𝐶 =

3 𝜇F, 6 𝜇F, 2 𝜇F, 4 𝜇F) mostrados en la figura encuentre:

3,00 𝜇F 6,00 𝜇F

2,00 𝜇F 4,00 𝜇F

90,0 V

(a) La capacidad equivalente del sistema.

(b) El voltaje a través de cada uno de los capacitores.

(c) La carga en cada uno de los capacitores.

(d) La energía total almacenada por el grupo.

Recuerde que la energía almacenada en un capacitor se puede escribir como 𝑈 =
𝑄2

2𝐶 =

𝐶𝑉2

2 .

(𝑎) Sean 𝐴1, 𝐴2 los dos capacitores en serie de arriba, 𝐵1, 𝐵2 los dos capacitores en
serie de abajo, y 𝐴, 𝐵 los capacitores que conforman cuando se los ve como una unidad.
En este modelo, tenemos un circuito con dos capacitores paralelos 𝐴 y 𝐵, cada uno de
los cuales está formado por sub-unidades dispuestas en serie.

Si dos capacitores están en serie, la inversa de s capacitancia conjunta es la suma de sus
capacitancias inversas. Por ende,

1
𝐶𝐴

=
1

3𝜇F
+ 1

6𝜇F
⇒ 𝐶𝐴 = 2𝜇F

1
𝐶𝐵

=
1

2𝜇F
+ 1

4𝜇F
⇒ 𝐶𝐵 =

4
3
𝜇F

Para dos capacitores en paralelo, su capacitancia conjunta es la suma de sus capacitancias,
y por ende:
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𝐶 := 𝐶total = (2 + 4
3
)𝜇F ≈ 3,33𝜇F

(𝑏) Para un capacitor 𝐶𝑥 arbitrario, el voltaje entre sus placas es 𝑉𝑥 = 𝑄𝑥/𝐶𝑥 , con 𝑄𝑥 la
magnitud de su carga y 𝐶𝑥 su capacitancia.

Veamos que

𝑄𝐴 = 𝑉𝐴𝐶𝐴 = 90𝑉 · 2𝜇F = 180𝜇𝐶

donde el voltaje de 𝐴 es equivalente al voltaje de la batería. Como los capacitores que
conforman 𝐴 están en serie, ambos tienen esa misma carga, y por ende𝑄𝐴1 = 𝑄𝐴2 = 𝑄𝐴.
Por lo tanto,

𝑉𝐴1 = 𝑄𝐴1/𝐶𝐴1 = 𝑄𝐴/3𝜇F = 180𝜇𝐶/3𝜇F = 60𝑉
𝑉𝐴2 = 𝑄𝐴2/𝐶𝐴2 = 𝑄𝐴/6𝜇F = 180𝜇𝐶/6𝜇F = 30𝑉

Para la rama 𝐵 es lo mismo:

𝑄𝐵 = 𝑉𝐵𝐶𝐵 = 90𝑉 · 4
3
𝜇F = 120𝜇𝐶

Y ahora

𝑉𝐵1 =
𝑄𝐵1

𝐶𝐵1

=
𝑄𝐵

2𝜇F
= 120𝜇𝐶 · 1

2𝜇F
= 60𝑉

𝑉𝐵2 =
𝑄𝐵2

𝐶𝐵2

=
𝑄𝐵

4𝜇F
= 120𝜇𝐶 · 1

4𝜇F
= 30𝑉

Notamos que 𝑉𝐴1 + 𝑉𝐴2 = 90𝑉 y 𝑉𝐵1 + 𝑉𝐵2 = 90𝑉 . También notamos que como el
ratio entre los capacitores en series es 2:1 en ambos casos 𝐴 y 𝐵, el voltaje se reparte
equitativamente en ambas ramas.

(𝑐) Ya determinos en (𝑏) que 𝑄𝐴𝑖 = 𝑄𝐴 = 180𝜇𝐶 y 𝑄𝐵𝑖 = 𝑄𝐵 = 120𝜇𝐶.

(𝑑) La capacitancia total en el sistema, de acuerdo con (𝑎), es 3,33𝜇F. El voltaje total
de la fuente es 90 V. Por ende,
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𝑈total =
𝐶total𝑉

2

2
=

10/3 · 902𝑉

2
= 13500𝜇J = 13,5mJ
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4. Sean los capacitores 𝐶1 = 10 𝜇𝐹, 𝐶2 = 5 𝜇𝐹 y 𝐶3 = 4 𝜇𝐹, encontrar la capacidad
equivalente en las siguientes conexiones:

(a) 𝐶1 conectado en paralelo a 𝐶2 y ambos en serie a 𝐶3. Si todo está conectado
a una fuente de 100 𝑉 , calcular la carga y la diferencia de potencial en cada
condensador.

(b) 𝐶1 conectado en serie a 𝐶2 y ambos en paralelo a 𝐶3. Si todo está conectado
a una fuente de 100 𝑉 , calcular la carga y la diferencia de potencial en cada
condensador.

(𝑎) El diagrama se ve así:

|---| C1 |----|
----| |---| C3 |

|---| C2 |----|

Propiedad útil. Para capacitores con distinta capacitancia: si están en serie tienen igual
carga y distinto voltaje; si están en paralelo tienen igual voltaje y distinta carga.

Propiedad En Serie En Paralelo

Carga (𝑄) IGUAL (𝑄𝑇 = 𝑄1 = 𝑄2) SE SUMA (𝑄𝑇 = 𝑄1 +𝑄2)

Voltaje (𝑉) SE SUMA (𝑉𝑇 = 𝑉1 +𝑉2) IGUAL (𝑉𝑇 = 𝑉1 = 𝑉2)

Capacitancia Eq. 1
𝐶𝑒𝑞

= 1
𝐶1

+ 1
𝐶2

(Disminuye) 𝐶𝑒𝑞 = 𝐶1 + 𝐶2 (Aumenta)

Cuadro 1: Propiedades de capacitores en serie y paralelo.

Capacidad equivalente. Sea 𝑀 el capacitor conformado por 𝐶1, 𝐶2 vistos como una
unidad. Como 𝐶1, 𝐶2 están en paralelo, 𝑀 = 𝐶1 + 𝐶2 = 15𝜇F. Como 𝑀 y 𝐶3 están en
serie,

1
𝐶eq

=
1
𝑀

+ 1
𝐶3

=
1

15𝜇F
+ 1

4𝜇F

de lo cual se sigue

𝐶eq ≈ 3,16𝜇F

Carga y voltaje en cada condensador. La carga total en el sistema es

75



𝑄𝑇 = 𝑉𝑇𝐶𝑇 = 100𝑉 · 3,16𝜇F = 316𝜇C

Como𝐶3 y 𝑀 están en serie, comparten la misma carga, i.e.𝑄𝑇 . El voltaje en𝐶3 obedece
entonces

𝑉3 =
𝑄3
𝐶3

=
316𝜇C
4𝜇F

= 79V

Por estar en serie 𝑀 y 𝐶3, se cumple 𝑉𝑀 +𝑉3 = 100V ⇒ 𝑉𝑀 = 21V .

Por estar en paralelo 𝐶1 y 𝐶2, comparten voltaje de 21V cada uno. Ahora bien, 𝑄𝑀 =

316𝜇C = 𝑄1 +𝑄2. Y además,

𝑄1 = 𝑉1𝐶1 = 21V · 10𝜇F = 210C
𝑄2 = 𝑉2𝐶2 = 21V · 5𝜇F = 105C

donde vemos que 𝑄1 + 𝑄2 ≈ 316𝜇C, con el error de una unidad seguramente viniendo
del redondeo que hicimos antes.

Con esto ya determinamos el voltaje y la carga en cada componente.
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(𝑏) El circuito es como sigue.

|---| C1 |----| C2 |----|
----| |----

|---------| C3 |---------|
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5. Dada la siguiente expresión que determina la capacitancia equivalente,

70 𝜇F = 50 𝜇F + 1
1

30 𝜇F + 1
20 𝜇F+𝐶1

1. Dibuje un diagrama de circuito que muestre cuatro capacitores entre dos puntos a
y b para determinar la capacitancia equivalente de la expresión anterior.

2. Encuentre el valor de 𝐶1.

3. Suponga que una batería de 6,00 V se conecta entre a y b. Encuentre la diferencia
de potencial a través de cada uno de los capacitores individuales y la carga en cada
uno.

(1) El diagrama es:

a b

50 𝜇F

30 𝜇F

20 𝜇F

𝐶1

(2) Sea 𝐵 el bloque complejo de la parte inferior del circuito. Sabemos que 50𝜇F+𝐶𝐵 =

70𝜇F con lo cual 𝐵 = 20𝜇F. Luego

1
20𝜇F

=
1

30𝜇F
+ 1

20𝜇F + 𝐶1
⇐⇒ 𝐶1 = 40𝜇F

como es fácil comprobar.

(3) Planteemos las ecuaciones que sabemos por la organización del circuito. Sea 𝐴 el
capacitor de arriba (50𝜇F), 𝐵 el de 30𝜇F, 𝐷 el de 20𝜇F y 𝐶 = 𝐶1 el de 40𝜇F.

1. 𝑉𝑇 = 𝑉𝐴 = 𝑉𝐵𝐶𝐷 (circuitos paralelos tienen igual voltaje)

2. 𝑄𝑇 = 𝑄𝐴 +𝑄𝐵𝐶𝐷 (circuitos paralelos tienen cargas aditivas)
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3. 𝑄𝐵𝐶𝐷 = 𝑄𝐵 = 𝑄𝐷𝐶 (circuitos en serie tienen igual carga)

4. 𝑄𝐷𝐶 = 𝑄𝐷 +𝑄𝐶 (circuitos paralelos tienen cargas aditivas)

5. 𝑄𝐴 = 𝑉𝐴 · 𝐶𝐴 (propiedad conocida, 𝑉 = 𝑄/𝐶.

6. 𝑉𝐵𝐶𝐷 = 𝑉𝐵 +𝑉𝐷𝐶 (Circuitos en serie tienen voltaje aditivo)

7. 𝑉𝐷𝐶 = 𝑉𝐷 = 𝑉𝐶 (Circuitos paralelos tienen igual voltaje)

Usando estas ecuaciones vamos resolviendo:

𝑄𝐴 = 6V · 50𝜇F = 300𝜇C (por ec. 5)

𝑄𝑇 = 𝐶𝑇 · 𝑉𝑇 = 70𝜇F · 6V = 420𝜇C

Por ec. 2, 𝑄𝐵𝐶𝐷 = 𝑄𝑇 −𝑄𝐴 = 120𝜇C

𝑉𝐵 = 𝑄𝐵/𝐶𝐵 = 𝑄𝐵𝐶𝐷/𝐶𝐵 (ec. 3) y por ende 𝑉𝐵 = 120𝜇C/30𝜇F = 4V

Por ec. 6, 𝑉𝐵𝐶𝐷 = 𝑉𝐵 +𝑉𝐷𝐶 y por ende 𝑉𝐷𝐶 = 𝑉𝐵𝐶𝐷 −𝑉𝐵. Por ec. 1, 𝑉𝐵𝐶𝐷 = 𝑉𝑇 =

6V , y ya vimos que 𝑉𝐵 = 4V . Por lo tanto, 𝑉𝐶𝐷 = 2V .

𝑄𝐷 = 𝑉𝐷𝐶𝐷 = 2V · 20𝜇F = 40𝜇C

𝑄𝐶 = 𝑉𝐶 · 𝐶𝐶 = 2V · 40𝜇F = 80𝜇C

En resumen:

El capacitor 𝐴 tiene carga 300𝜇Cy voltaje 6V .

El capacitor 𝐵 tiene carga 120𝜇C y voltaje 4V .

El capacitor 𝐶 tiene carga 80𝜇C y voltaje 2V .

El capacitor 𝐷 tiene carga 40𝜇C y voltaje 2V .
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6. En un capacitor esférico lleno de aire los radios de las cubiertas interior y exterior
miden 7 y 14 cm, respectivamente. (a) Calcule la capacitancia del dispositivo. (b) ¿Cuál
tendrá que ser la diferencia de potencial entre las esferas para obtener una carga de 4 mC
en el capacitor?

(𝑎) Recordemos que 𝑉 = 𝑄/𝐶 ⇒ 𝐶 = 𝑄/𝑉 . El campo eléctrico a una distancia 𝑟 del
centro es

𝐸 =
1

4𝜋𝜖0
𝑄

𝑟2

El voltaje es la suma del campo elétrico generado a lo largo de todo el recorrido entre la
capa interior 𝑟𝑎 a la exterior 𝑟𝑏:

𝑉 =
𝑄

4𝜋𝜖0

∫ 𝑟𝑏

𝑟𝑎

1
𝑟2 𝑑𝑟

Resolviendo esta ecuación, obtenemos

𝑉 =
𝑄

4𝜋𝜖0

(
𝑟𝑏 − 𝑟𝑎
𝑟𝑎𝑟𝑏

)
De esto se sigue que

𝐶 =
𝑄

𝑄

4𝜋𝜖0

(
𝑟𝑏−𝑟𝑎
𝑟𝑎𝑟𝑏

)
= 4𝜋𝜖0

𝑟𝑎𝑟𝑏

𝑟𝑏 − 𝑟𝑎

En nuestro caso, tenemos 𝑟𝑎 = 7cm, 𝑟𝑏 = 14cm. Por ende, la capacitancia es

𝐶 = 4𝜋𝜖0
14 · 7

7
= 56𝜋𝜖0

(𝑏) Se nos pide hallar 𝑉 tal que 𝑄 = 4mC. Si asumimos este valor de 𝑄, tenemos
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9 Considere el circuito con resistencias:

|-------R1-------------
| | |

positivo | |
R3 R4

negativo | |
| | |
|-------R2-------------

donde 𝑅1 = 2Ω, 𝑅3 = 3Ω, 𝑅4 = 1Ω, 𝑅2 = 4Ω. Hallar corriente por cada resistencia,
potencia total entregada por la batería a cada resistencia y al conjunto total.

(𝑎) 𝑅3, 𝑅4 están en paralelo y por ende sus resistencias se suman: 𝑅34 = 𝑅3 + 𝑅4 = 4Ω.

𝑅1 y 𝑅34 están en serie, y 𝑅34 y 𝑅2 también, así que la resistencia total es

𝑅𝑇 =
1
𝑅1

+ 1
𝑅34

+ 1
𝑅2

=
1
2
+ 1

4
+ 1

4
= 1Ω

Por Ohm, 𝑉 = 𝐼 × 𝑅 y por ende 𝐼 = 𝑉
𝑅
= 18V/1Ω = 18𝐴. Ahora, por cada resistor:

En 𝑅1, es 𝐼1 = 𝑉/𝑅1 = 18V/2Ω = 9𝐴.

En 𝑅2 es 𝐼2 = 𝑉/𝑅2 = 9
2𝐴

En 𝐼34 = 𝑉/𝑅34 = 9
2𝐴. La corriente se mantiene dentro de cada rama, y por ende

𝐼3 = 𝐼4 = 𝐼34.

(𝑏) La potencia entregada es 𝑃 = 𝐼2𝑅. Por ende, 𝑃 = (18𝐴)21Ω = 324W.
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(10) Encuentre las corrientes 𝐼1, 𝐼2, 𝐼3.

14.0 V
+ −

4,0Ω 𝐼2

10.0 V 6,0Ω 𝐼1− +

2,0Ω

𝐼3

𝑎

𝑏 𝑐

𝑑

𝑒 𝑓

Kirchhoff de corrientes:
∑
𝐼in =

∑
𝐼out

Kirchhoff de voltaje. The algebraic sum of all voltages in a loop must equal zero

(𝑎) Por Kirchhoff de corrientes, como 𝐼3 es la corriente que sale de 𝑐 y 𝐼1, 𝐼2 son las que
entran, 𝐼3 = 𝐼1 + 𝐼2.

(𝑏) Considere el loop 𝑏 → 𝑐 → 𝑓 → 𝑒 → 𝑏. Al recorrer 𝑏 → 𝑐, la batería suma 10 de
voltaje. Al pasar por el resistor, como nos movemos con la corriente 𝐼1, el voltaje cambia
−6𝐼1 (decrece). Al recorrer 𝑐 → 𝑓 → 𝑒 pasamos por la batería, que suma 14V. Luego
pasamos por 𝑒 → 𝑏, y notemos que nos movemos en contra de la corriente 𝐼2, por lo
cual aumentamos el voltaje en 4𝐼2.

∴ 10 − 6𝐼1 + 14 + 4𝐼2 = 0
⇐⇒ − 6𝐼1 + 4𝐼2 = −24
⇐⇒ 3𝐼1 − 2𝐼2 = 12

Un análisis similar del loop 𝑏 → 𝑐 → 𝑑 → 𝑎 → 𝑏 nos da

4𝐼1 + 𝐼2 = 5
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Tenemos por ende que resolver el sistema

{
4𝑥 + 𝑦 = 5
3𝑥 − 2𝑦 = 12

Tomando 𝑦 = 5 − 4𝑥 de la primera ecuación, la segunda resulta

3𝑥 − 2(5 − 4𝑥) = 12
⇐⇒ 3𝑥 − 10 + 8𝑥 = 12
⇐⇒ 11𝑥 = 22

𝑥 = 2

Sustituyendo en la ecuación uno, resulta 𝑦 = −3. Por ende, 𝐼1 = 2𝐴, 𝐼2 = −3𝐴. Como
𝐼3 = 𝐼1 + 𝐼2, obtenemos 𝐼3 = −1𝐴.
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11. Una estufa eléctrica es fundamentalmente una resistencia que disipa potencia cuando
circula corriente a través de ella. Si la estufa eléctrica disipa una potencia de 1 kW cuando
se la conecta a una fuente de 50 V determine:

1. ¿Cuál es la resistencia de la estufa?

2. Si se corta la resistencia de la estufa en dos partes iguales y cuando la reparan
ponen las dos partes de la resistencia conectadas en paralelo entre sí. Analice si
ahora la estufa calentará más o menos cuando la resistencia estaba entera.

(1) Sea 𝑅 la resistencia que representa la estufa. Sabemos que 𝑃 = 𝑉2/𝑅. Por ende,

𝑅 =
𝑉2

𝑃
=

2500A2

1000W
= 2,5Ω

(2) Recordemos que la resistencia de un conductor es proporcional a su longitud:

𝑅 = 𝜚
𝐿

𝐴
(1)

donde 𝜚 es la resistividad del material, 𝐿 la longitud del resistor, y 𝐴 su área. Si partimos
el resistor a la mitad, obtenemos dos resistors de resistividad

𝑅1 = 𝜚
𝐿

2𝐴
, 𝑅2 = 𝜚

𝐿

2𝐴

donde claramente 𝑅1 = 𝑅2 = 𝑅/2 = 1,25Ω con 𝑅 conocido (por el punto 1). La
resistencia equivalente del sistema con las resistencias partidas es

1
𝑅′ =

1
1,25Ω

+ 1
1,25Ω

= 1,6Ω ⇒ 𝑅′ = 0,625Ω

La nueva potencia generada por este sistema es

𝑃′ =
𝑉2

𝑅𝑒𝑞
=

2500A2

0,625Ω
= 4000W = 4kW

Es decir, partir el resistor y conectar las dos partes en paralelo hace que produzca cuatro
veces más potencia.
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(12) Observaciones:

Por conservación de la carga, 𝑄𝑇 =
∑
𝑄𝑖 en cada instante de tiempo.

El estado final es de equilibrio y por ende, en dicho estado, 𝐼 = 0, 𝑉 = 0.

Los capacitores están en paralelo y por lo tanto tienen igual voltaje pero distinta
carga.

Estado inicial:

La carga de 𝐶1 es 𝑄.

La carga de 𝐶2 es cero.

La carga total es 𝑄.

Por ser paralelos, 𝑄𝑇 = 𝑄1 +𝑄2 = 1.

Estado final. Se ha alcanzado el equilibrio y las cargas se han distribuido entre los dos
capacitores, dejando el voltaje y la corriente nulos. Las cargas son desconocidas y las
llamamos 𝑞1, 𝑞2. Por conservación de la carga,

𝑞1 + 𝑞2 = 𝑄𝑇 = 𝑄

El voltaje 𝑉 𝑓 en cada capacitor es idéntico. Sabemos

𝑉 𝑓 =
𝑞1
𝐶1
, 𝑉 𝑓 =

𝑞2
𝐶2

Sabemos que 𝐶1 = 𝐶 y 𝐶2 = 3𝐶. Luego tenemos

𝑉 𝑓 =
𝑞1
𝐶
, 𝑉 𝑓 =

𝑞2
3𝐶

Se tiene entonces

𝑞1
𝐶

=
𝑞2
3𝐶

⇐⇒ 𝐶 (3𝑞1 − 𝑞2) = 0 ⇐⇒ 3𝑞1 − 𝑞2 = 0

Tenemos entonces dos ecuaciones que involucran las dos incógnitas 𝑞1, 𝑞2:
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𝑞1 + 𝑞2 = 𝑄, 𝑞2 = 3𝑞1

De esto se sigue 𝑞1 =
𝑄

4 y 𝑞2 = 3
4𝑄. Por ende, expresamos el voltaje entre las placas

como:

𝑉 𝑓 =
𝑄

4𝐶

La energía en un capacitor es𝑈 = 1
2
𝑞2

𝐶
. Entonces nos queda

𝑈1 =
1
2
𝑞2

1
𝐶

=
1
2
𝑄2

16𝐶
=
𝑄2

32𝐶

Misma lógica da 𝑈2 = 3𝑄2/32𝐶. La energía final total es la suma de estas dos: 𝑈 𝑓 =

4𝑄2/32𝐶 = 𝑄2/8𝐶.

La energía disipada es la diferencia entre la energía inicial y la final. La final ya la
sabemos. La inicial se sigue fácil si recordamos que, en el estado nicial, sólo el primer
capacitor tenía carga (𝑄). Por ende,𝑈𝑖 𝑄

2

2𝐶 . Por ende,

𝑈disipada =
𝑄2

2𝐶
− 𝑄2

8𝐶
=

3𝑄2

8𝐶

Esta es energía que "se perdió 2ya no está en el sistema cuando llegamos al estado final,
disipada en forma de calor.
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6. Magnetismo
(1). Por efecto de un campo magnético, tres partículas siguen las trayectorias mostradas
en la figura. ¿Qué puede decir sobre la carga de dichas partículas?

Solución. Sean 𝑞1, 𝑞2, 𝑞3 las cargas de las partículas superior, media e inferior en el
gráfico. El campo magnético B va hacia la pantalla. La fuerza de un campo magnético
sobre una carga es

®𝐹 = 𝑞(®𝑣 × ®𝐵)

Pro ende, siempre es perpendicular a la velocidad del cuerpo cargado. Por ende, jamás
afecta la velocidad del cuerpo, sino solo su dirección.

De acuerdo con la regla de la mano derecha, ®𝑣 × ®𝐵

(𝑞2) Esta partícula viaja en línea recta, i.e. no experimenta cambio de dirección. Se sigue
que la fuerza ®𝐹2 = 𝑞

(
®𝑣1 × ®𝐵

)
es nula. Pero ni la velocidad ni el campo son nulos. ∴

𝑞2 = 0.

(𝑞1) De acuerdo con la regla de la mano derecha, el vector unitario paralelo al producto
cruz ®𝑞1 × ®𝐵 apunta “hacia arriba”. En toda su trayectoria, la dirección de la partícula
cambia en dirección paralela a dicho vector. Se sigue que la carga es positiva.

(𝑞2) De acuerdo con la regla de la mano derecha, el vector unitario paralelo al producto
cruz ®𝑞1 × ®𝐵 apunta “hacia la derecha”. En toda su trayectoria, la dirección de la partícula
cambia en dirección opuesta a dicho vector. Se sigue que la carga es negativa.
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(2) Una partícula que posee una energía cinética de 10−13J se desplaza en un campo
magnético de 2T con velocidad paralela al campo. ¿Cómo será la trayectoria de la
partícula?

Solución. Como la velocidad es paralela al campo,

®𝐹 = 𝑞

(
®𝑣 × ®𝐵

)
= 𝑞𝑣𝐵 sin 0 𝑛̂ = 0

Se sigue que el campo no afecta la dirección de la partícula. La partícula viaja en línea
recta (asumiendo que no hay otras fuerzas).
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3. Una barra de 100g y 50cm de longitud se encuentra inmersa en un campo magnético
de 1T, perpendicular a éste (ver figura). La barra cuelga de una estructura conductora
mediante dos resortes conductores (uno en cada extremo), de constante elástica 𝑘 =

0,5N/m. El conjunto forma un circuito por el cual circula una corriente.

1. ¿En qué dirección debe circular la corriente de manera que los resortes se estiren?

2. ¿Cuánto debe valer la corriente para que ambos resortes se estiren 5 mm?

×
×
×

×
×
×

×
×
×

×
×
×

×
×
×

×
×
×

×
×
×

×
×
×

×
×
×

×
×
×

×
×
×

×
×
×

× × × × × × × × × × × ×

Power Supply

Datos del problema.

1. 𝐿 = 50cm, 𝑚 = 100g.

2. La barra experimenta la fuerza de la gravedad ®𝐹𝑔, la fuerza elástica de los resortes
®𝐹𝑒, y la fuerza magnética generada por el campo ®𝐹𝐵.

3. ®𝐹𝑔 = −𝑚𝑔 𝑗

4. ®𝐹𝑒 = 2 (𝑘Δ𝑦) 𝑗 , con Δ𝑦 la distancia entre el extremo inferior de un resorte y su
posición de equilibrio.

5. ®𝐹𝐵 = 𝐼 ( ®𝐿 × ®𝐵) donde ®𝐿 es el vector de magnitud 𝐿 que apunta en dirección de la
corriente.

6. De acuerdo con la regla de la mano derecha y el item anterior,

a) Si la corriente corre de derecha a izquierda, ®𝐹𝐵 = −𝐼𝐵𝐿 𝑗

b) Si la corriente corre de izquierda a derecha, ®𝐹𝐵 = 𝐼𝐵𝐿 𝑗 .

(3.1) Ya determinamos que si la corriente corre de derecha a izquierda, la fuerza electro-
magnética empuja la barra “hacia abajo”. Esta es claramente la dirección que estira los
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resortes, pues se nos dice que la barra “cuelga” de ellos. Por ende, si la corriente corre
en esta dirección, los resortes se estiran.

Sin embargo, los resortes pueden permanecer estirados incluso si la corriente corre
de derecha a izquierda, siempre y cuando la fuerza electromagnética generada por la
corriente no supere la fuerza de gravedad.

(3.2) El problema se puede interpretar de dos formas: que los resortes se estiren en total
5mm, o que se estiren 5mm más de lo que se estiran si no hay corriente (no hay fuerza
magnética). Resuelvo para ambos casos.

(Que se estiren en total 5mm) Asumimos de ahora en más que la corriente corre de
derecha a izquierda, y que por ende ®𝐹𝐵 = −𝐼𝐵𝐿 𝑗 . Notemos que

∑︁
®𝐹 = 0

®𝐹𝑒 + ®𝐹𝑔 + ®𝐹𝐵 = 0
2𝑘Δ𝑦 𝑗 − 𝑚𝑔 𝑗 − 𝐼𝐵𝐿 𝑗 = 0

Proyectando sobre el eje 𝑦:

2𝑘Δ𝑦 = 𝑚𝑔 + 𝐼𝐵𝐿
𝐼𝐵𝐿 = 2𝑘Δ𝑦 − 𝑚𝑔

𝐼 =
2𝑘Δ𝑦 − 𝑚𝑔

𝐵𝐿

Reemplazando por los valores numéricos (𝐿 = 0,5m, 𝐵 = 1T,Δ𝑦 = 0,005m, 𝑘 =

0,5N/m):

𝐼 =
2(0,5) (0,005) − (0,1) (9,8)

(1) (0,5)

𝐼 =
0,005 − 0,98

0,5

𝐼 =
−0,975

0,5
𝐼 = −1,95A

El signo negativo indica que la dirección de la corriente es contraria a la asumida.
Para que los resortes se estiren solamente 5mm (venciendo el estiramiento mayor que
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provocaría la gravedad sola), la fuerza magnética debe apuntar hacia arriba. Por tanto,
la corriente debe circular de izquierda a derecha con una magnitud de 1,95A.

(Que se estiren en total 5mm). Ya establecimos que∑︁−→
𝐹 = −2𝑘Δ𝑦 𝑗 − 𝑚𝑔 𝑗 − 𝐼𝐵𝐿 𝑗

asumiendo que la corriente baja la barra, i.e. va de derecha a izquierda. Si no hay
corriente alguna, la fuerza magnética es nula y la barra estira los resortes

− 2𝑘Δ𝑦 𝑗 − 𝑚𝑔 𝑗 = 𝑚𝑎 𝑗
⇐⇒ − 2𝑘Δ𝑦 − 𝑚𝑔 = 0

⇐⇒ Δ𝑦 = −𝑚𝑔
2𝑘

⇐⇒ Δ𝑦 = − (0,1) (9,8)
2(0,5)

⇐⇒ Δ𝑦 = −0,98m

Entonces ahora la pregunta es qué valor de 𝐼 garantiza Δ𝑦 = −0,98m−5mm = −0,985m
en un estado de equilibrio (aceleración nula). Es decir, deseamos:

− 2𝑘 (−0,985) 𝑗 − 𝑚𝑔 𝑗 − 𝐼𝐵𝐿 𝑗 = 0
⇐⇒ − 2𝑘 (−0,985) − 𝑚𝑔 − 𝐼𝐵𝐿 = 0
⇐⇒ 𝐼𝐵𝐿 = 2𝑘 (0,985) − 𝑚𝑔

⇐⇒ 𝐼 =
2𝑘 (0,985) − 𝑚𝑔

𝐵𝐿

⇐⇒ 𝐼 =
2(0,5) (0,985) − (0,1) (9,8)

(1) (0,5)

⇐⇒ 𝐼 =
0,985 − 0,98

0,5

⇐⇒ 𝐼 =
0,005
0,5

⇐⇒ 𝐼 = 0,01A
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4. Un electrón es disparado en dirección perpendicular a un campo magnético de 1T a
una velocidad de 106 ms−1. Calcule el radio de curvatura de la trayectoria del electrón
en el campo, y la frecuencia angular de rotación.

Comentario teórico. Si una partícula entra perpendicularmente a un campo magnético,
describe un movimiento circular uniforme y la fuerza magnética actúa como fuerza
centrípeta. La magnitud de una fuerza centrípeta sobre u ncuerpo de masa𝑚 y velocidad
𝑣 es 𝑚𝑣2/𝑅, donde 𝑅 es el radio del movimiento circular. En resumen, dadas estas
condiciones,

𝐹𝐵 = 𝑚
𝑣2

𝑅

Solución. De lo dicho anteriormente y con 𝐹𝐵 = 𝑞𝑣𝐵 sin 𝜃 = 𝑞𝑣𝐵, obtenemos

𝑅 =
𝑚𝑣2

𝑞𝑣𝐵

=
𝑚𝑣

𝑞𝐵

=
9,109 · 10−31 · 106

1,602 · 10−19 · 1
kg m/s2

CT

=
9,109
1,602

· 10−6 m

= 5,68601747815 · 10−6 m

La frecuencia angular es 𝜔 = 𝑣/𝑅, con lo cual queda

𝜔 =
106m/s2

5,68601747815 · 10−6 m
≈ 1012

5,69
= 0,1757 × 1012rad/s

∴ 𝜔 = 1,757 · 1011rad/s.
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5. Un selector de velocidad está constituido por los campos eléctrico y magnético que se
describen mediante las expresiones ®𝐸 = 𝐸 𝑘̂ y 𝐵 = 𝐵 𝑗 , siendo 𝐵 = 15,0𝑚𝑇 . Determine
el valor de 𝐸 tal que un electrón de 750eV trasladándose a lo largo del eje positivo 𝑥 no
se desvíe.

Solución. Para que la partícula no se desvíe, la fuerza eléctrica debe cancelar totalmente
a la fuerza eléctrica. La magnitud de la fuerza recibida por una carga 𝑞 en un campo
eléctrico es 𝑞𝐸 . La magnitud de la fuerza recibida por una carga 𝑞 que se mueve a una
velocidad 𝑣 en un campo magnético es 𝑞𝑣𝐵. Si igualamos ambas cantidades, obtenemos
la ecuación:

𝐸 = 𝑣𝐵 (2)

Queremos determinar 𝐸 , pero 𝑣 también es desconocida y por ende debemos derivarla.

Paso intermedio. Asumamos un electrón de energía 𝐾 = 750𝑒𝑉 . La energía cinética
obedece 𝐾 = 1

2𝑚𝑣
2. La masa de un electrón 𝑚𝑒 es conocida y por ende esta es una

ecuación con única incógnita 𝑣.

𝑣 =

√︂
2𝐾
𝑚𝑒

=

√︄
1500eV

9,109 × 10−31

=

√︄
1500 · 1,602 × 10−19

9,109 × 10−31

=
√︁

263,805027994
√︁

1012

= 16,2420758524 × 106

Solución final. Con el valor de 𝑣 podemos resolver la ecuación (1):

𝐸 ≈
(
16,24 × 106m/s

)
(15mT)

= 16,24 · 15 × 106 · 10−3 V/m
= 243,6 × 103 V/m
= 243600 V/m
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Nota. La unidad V/m se sigue de que

m/s · T = m/s · V s 1/m2 = V/m

Pero V/m = (J/C)/m = N/C es otra forma usual de expresar la magnitud de un campo
eléctrico.
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6. Se mantiene una corriente de 17 mA en solo una espira circular de 2 m de circunfe-
rencia. Un campo magnético de 0,800T se dirige en paralelo al plano de la espira.

Calcule el momento magnético de la espira.

¿Cuál es la magnitud del momento de torsión ejercida por el campo magnético
sobre la espira?

Notas teóricas. Recordemos que la corriente 𝐼 que viaja a través de un conductor
circular genera un campo magnético que pasa a través del mismo (Figura 2). La
corriente se comporta entonces como un dipolo magnético (básicamente un imán).
La fuerza del dipolo (del campo electromagnético) depende de la corriente 𝐼, de la
cantidad de vueltas 𝑁 que da la corriente, y el área 𝐴 formada por el conductor. A
esta fuerza le llamamos el momento (𝑚) del dipolo magnético:

Momento magnético := 𝜇 := 𝑁𝐼𝐴

con [𝑚] = Am2. Pero la fuerza magnética no tiene solo una magnitud, sino una
dirección. Se encuentra con una regla simple de la mano derecha. Si 𝑛̂ es el vector
normal obtenido con la relga de la mano derecha, se tiene entonces

®𝜇 = 𝑁𝐼𝐴 𝑛̂

Notar que ®𝜇 ∥ ®𝑛 y por ende es perpendicular al plano formado por la espira.
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Figura 2: Representación de la espira circular flotando y el campo electromagnético a
través de ella.

Cuando una espira com momento ®𝜇 se sitúa en un campo magnético externo ®𝐵,
experimenta una fuerza de torque ®𝜏. Esta fuerza hace rotar la espira de manera tal
que su momento magnético se alinee con el campo ®𝐵. In general,

®𝜏 = ®𝜇 × ®𝐵

When a current loop with a magnetic moment 1 ®𝜇 (often denoted as 2®𝑢) is placed
in an external magnetic field 3 ®𝐵, it experiences a torque 4𝜏.5 This torque tends to
rotate the loop so that its magnetic moment aligns with the external magnetic field
(Figure 3)
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Figura 3: Representación de cómo la espira de la Figura 1 rotaría (mostrando tres instantes
de tiempo) si la situamos en un campo ®𝐵 externo y perpendicular a ®𝜇. El momento de
máximo torque es el instante cero, cuando ®𝜇 y ®𝐵 son totalmente perpendiculares. El
torque va decreciendo a medida que la espira se alinea con el campo. Finalmente se
alinean y la espira alcanza un estado de equilibrio (la fuerza de torque es cero).

Solución. (𝑎) Ya sabemos que el momento magnético de la espira es ®𝜇 = 𝐼𝑁𝐴 𝑛̂ con
𝑛̂ un vector perpendicular al plano de la espira y determinado por la regla de la mano
derecha. Nos dicen que la corriente se mantiene en “solo una espira”, i.e. 𝑁 = 1. También
nos dan 𝐼 = 17mA. Solo queda determinar 𝐴.

Recordemos que en una circunferencia, Area = 𝜋𝑟2,Circunferencia = 2𝜋𝑟 . Nos dieron
la circunferencia así que 𝑟 = 2m/2𝜋 = 1

𝜋
m. Luego el área es 𝐴 = 𝜋m · 1

𝜋2 m = 1
𝜋
m2. Por

ende,

®𝜇 =
17
𝜋

mA m2

(𝑏) Sea ®𝐵 el campo paralelo al plano de la espira. Como 𝜇̂ es perpendicular al plano
de la espira, se sigue ®𝐵 ⊥ 𝑢̂. La fuerza de torque será máxima. En particular, tendremos
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𝜏 =

��� ®𝜇 × ®𝐵
���

= 𝜇 · 𝐵 · sin
𝜋

2

=
17
𝜋

(0,800) mA T m2

=
17
𝜋

· 4
5

mA T m2

=
68
5𝜋

× 10−3 Nm

≈ 0,00433 Nm
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7. Dos alambres conductores paralelos transportan una corriente de 1A en la misma
dirección, pero con sentidos contrarios. Los alambres se encuentran separados una
distancia de 10cm. Determine el campo magnético en un punto ubicado 10cm por arriba
de los alambres (medido desde la línea que une a ambos), y a una distancia equidistante
de ellos.

Diagrama. El siguiente diagrama refleja la situación, donde definimos el eje vertical
como el eje ubicado justo entre los dos cables y el eje horizontal como el eje que conecta
los dos cables. Notar que en este sistema, 𝑃 = 0𝑖 + 10cm 𝑗 .

Solución. Un único alambre con corriente 𝐼 en un punto 𝑃 a una distancia 𝑟 de aquél
genera un campo de magnitud

®𝐵 =
𝜇0

2𝜋𝑟
𝑛̂

con 𝜇0 la permeabilidad del vacío y 𝑛̂ unitario y perpendicular a la línea radial 𝑟 (línea
del cable al punto 𝑃).

Por el principio de superposición, el campo ®𝐵 en el punto 𝑃 será la suma de los campos
generados por ambos cables. Omitiendo unidades:

®𝐵 = ®𝐵1 + ®𝐵2 =
𝜇0

2𝜋𝑟
𝑛1 +

𝜇0
2𝜋𝑟

𝑛2 =
𝜇0

2𝜋𝑟
(𝑛1 + 𝑛2)

Notemos que de las expresiones anteriores se sigue que ambos campos tienen igual
magnitud 𝐵 := 𝜇/2𝜋𝑟 .

𝑟 sale fácil: en el diagrama vemos que es la hipotenusa de un triángulo con base 5cm y
altura 10cm, de lo cual sale por Pitágoras que 𝑟 ≈ 0,1118m.
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Para determinar 𝑛1 + 𝑛2 necesitamos expresar estos vectores en nuestro sistema de coor-
denadas tomando su proyección. Si nos avivamos, vemos por la regla del paralelogramo
que al sumar 𝑛1 + 𝑛2, las componentes horizontales se van a anular y las componentes
verticales se van a sumar.

El vector 𝑛1 es perpendicular a 𝑟1 y por lo tanto, si 𝑟1 = (𝑟1𝑥 , 𝑟1𝑦), vamos a tener que
𝑛1 = (−𝑟1𝑦, 𝑟1𝑥). Es fácil ver por trigonometría que

®𝑟1 = (cos 𝜃, sin 𝜃) =
(
5
𝑟
,
10
𝑟

)
Por ende, 𝑛1 = (−10

𝑟
, 5
𝑟
). Ya dĳimos que 𝑛̂1 + 𝑛̂2 duplica las componentes verticales y

anula las horizontales. Por ende,

𝑛1 + 𝑛2 = 2 · 5
𝑟
𝑗

Estas coordenadas están en centímetros, así que en metros queda 𝑛1 = 2 · 0,05
𝑟

𝑗 . En
conclusión:

®𝐵 = 2 ×
(
𝜇0𝐼

2𝜋𝑟

)
×

(
0,05 m
𝑟

)
𝑗

=
𝜇0𝐼 (0,05)
𝜋𝑟2 𝑗

=
(4𝜋 × 10−7) · (1 A) · (0,05)

𝜋 · (0,0125) 𝑗

Simplificando con calculadora,

®𝐵 = 1,6𝜇T 𝑗
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8. Sean dos alambres conductores paralelos por los que circulan corrientes 𝑖𝑎 e 𝑖𝑏 en
la misma dirección y sentido. Los alambres se encuentran separados una distancia 𝑑.
Determine la posición entre ellos donde el campo magnético será nulo, según los valores
de las corrientes.

(𝑎) Ya dĳimos que el campo generador por un único alambre con corriente 𝐼 en un punto
𝑃 a una distancia 𝑟 de aquél es

®𝐵 =
𝜇0𝐼

2𝜋𝑟
𝑛̂

con 𝑛̂ perpendicular a 𝑟, el vector del cable al punto. En nuestro caso, las corrientes
fluyen en la misma dirección y sentido, que imponemos como 𝑘̂ . Debería ser claro que
®𝐵𝑎 es vertical y hacia arriba, ®𝐵𝑎 es vertical hacia abajo, y por ende que

®𝐵 = ®𝐵𝑎 + ®𝐵𝑏
= 𝐵𝑎 𝑗 − 𝐵𝑏 𝑗
= (𝐵𝑎 − 𝐵𝑏) 𝑗

=

(
𝜇0𝑖𝑎
2𝜋𝑟𝑎

− 𝜇0𝑖𝑏
2𝜋𝑟𝑏

)
𝑗

=
𝜇0
2𝜋

(
𝑖𝑎

𝑟𝑎
− 𝑖𝑏

𝑟𝑏

)
𝑗

=
𝜇0
2𝜋

(
𝑖𝑎

𝑟𝑎
− 𝑖𝑏

𝑑 − 𝑟𝑎

)
𝑗

Para que el campo magnético sea nulo, se necesita entonces
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𝑖𝑎

𝑟𝑎
=

𝑖𝑏

𝑑 − 𝑟𝑎
⇐⇒ 𝑟𝑎

𝑑 − 𝑟𝑎
=
𝑖𝑎

𝑖𝑏

⇐⇒ 𝑟𝑎 = 𝑤(𝑑 − 𝑟𝑎) {𝑤 := 𝑖𝑎/𝑖𝑏}
⇐⇒ 𝑟𝑎 = 𝑤𝑑 − 𝑤𝑟𝑎
⇐⇒ 𝑟𝑎 + 𝑤𝑟𝑎 = 𝑤𝑑
⇐⇒ 𝑟𝑎 (1 + 𝑤) = 𝑤𝑑

⇐⇒ 𝑟𝑎 =
𝑤𝑑

1 + 𝑤

⇐⇒ 𝑟𝑎 =
𝑖𝑎

𝑖𝑏

(
𝑑

1 + 𝑖𝑎
𝑖𝑏

)
⇐⇒ 𝑟𝑎 =

𝑖𝑎𝑑

𝑖𝑏 + 𝑖𝑎

Claramente 𝑟𝑏 es función de 𝑟𝑎 (ya usamos esto). Así que esto basta para definir la
distancia del punto respecto a los dos cables.
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9. Dos alambres largos y paralelos se atraen entre sí con una fuerza por unidad de
longitud igual a 320 mN/m cuando están separados una distancia vertical de 0,5 m. La
corriente en el alambre superior es de 20,0 A hacia la derecha. Determine la ubicación
de la línea en el plano de los dos alambres a lo largo de la cual el campo magnético total
es igual a cero.

Datos y sistema de coordenadas. Imponemos un sistema de coordenadas con eje 𝑥 a lo
largo del cable inferior, en dirección de su corriente (derecha).

Teorema. La fuerza generada entre dos conductores paralelos con corriente 𝐼1, 𝐼2
es

𝐹

𝐿
=
𝜇𝐼1𝐼2
2𝜋𝑑

donde es la distancia entre ambos conductores, 𝐿 la longitud en metros, 𝐹
𝐿

la fuerza
por metro.

Nos dan el dato de que la fuerza por metro es 320mN/m. Es decir, obviando unidades,

0,320 =
4𝜋 × 10−7 · 20 · 𝐼2

2𝜋 · 0,5
0,320 = 80 · 𝐼2 · 10−7

𝐼2 =
0,320

80 · 10−7

𝐼2 =
320 × 10−3

80 · 10−7

𝐼2 = 4 × 104

𝐼2 = 40000

Ahora que ya sabemos la corriente del segundo cable, sabemos que un punto cualquiera
de los dos experimenta la fuerza combinada de ambos. Notemos que en el ejercicio
8 ya calculamos cuál es la distancia necesaria para que el campo entre dos corrientes
paralelas se anulen. Usando ese resultado, todo punto a una distancia

𝑟 =
𝐼20,5m
𝐼2 + 𝐼1

entre los dos cables no experimentará ninguna fuerza. Resolviendo:
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𝑟 =
40000 · 0,5

400020
= 0,49975012493
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10. Un solenoide de 30 cm de longitud y 1 cm de diámetro está construido con 100
vueltas de alambre de cobre de 1 mm2 de sección. La bobina se conecta a una batería
de 0,1 V, y luego de un transitorio, se establece una corriente constante en su bobinado.
¿Cuánto vale el campo magnético en el centro del solenoide después del transitorio?

Teoría. Un solenoide ideal de longitud 𝐿 crea un campo uniforme en su interior y nulo
en el exterior:

𝐵 = 𝜇0𝑛𝐼 = 𝜇0
𝑁

𝐿
𝐼

donde 𝑛 = 𝑁
𝐿

es la cantidad de vueltas por unidad de longitud.

Solución. Necesitamos determinar la corriente. Se nos dice que el voltaje de la batería
es 0.1V, y sabemos que 𝐼 = 𝑉

𝑅
por la ley de Ohm. 𝑉 es conocido, y de 𝑅 sabemos que

obedece:

𝑅 = 𝜚
𝐿alambre
𝐴

con 𝜚 la resistividad del cobre y 𝐴 el área de la sección transversal del alambre. Nos
dicen que 𝐴 = 1mm2 = (1 × 10−3m)2 = 10−6m2.

Sabemos que el alambre da 100 vueltas con circunferencia 0,01m. La longitud de una
vuelta por ende es 𝜋 × 0,01m. Por ende, la longitud total del alambre es:

𝐿alambre = 100 × 𝜋 × 0,01 = 𝜋m

Por lo tanto, la resistividad del alambre es

𝑅 = (1,7 × 10−8Ω/m) 𝜋m
10−6m2

= (1,7 × 10−8Ω/m)106𝜋m
= 1,7𝜋 × 10−2 Ω

= 0,05340707511Ω

Sabiendo la resistividad, ya obtenemos la corriente:

𝐼 =
0,1V

1,7𝜋 × 10−2Ω
= 1,8724110952A
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Teniendo la corriente, ya podemos usar la fórmula del soneloide ideal. Obviando unida-
des:

𝐵 = 𝜇0
𝑁

𝐿
𝐼

= (4𝜋 × 10−7) 100
0,3

× 1, 8724110952

= 7,4896443808 × 100𝜋
0,3

× 10−7

= 7,4896443808 × 1047,1975512 × 10−7

= 7843,13725493 × 10−7

= 7,84313725493 × 10−4
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11. Por fuera del solenoide anterior de ubica una bobina de 2cm de diámetro y 20
vueltas, de manera concéntrica entre ellas y con sus centros geométricos en la misma
posición. ¿Cuánto vale la fuerza electromotriz inducida en esta segunda bobina al reducir
la corriente en el solenoide hasta cero en un tiempo de 1s, en forma lineal?

Teoría. La Ley de Faraday-Lenz establece que un cambio en el flujo magnético a través
de un circuito induce una fuerza electromotriz (FEM):

E = −𝑁2
𝑑Φ𝐵

𝑑𝑡

donde 𝑁2 es el número de vueltas de la bobina que recibe la inducción y 𝑑Φ𝐵/𝑑𝑡 es la
tasa de cambio del flujo magnético.

El flujo magnético se define como

Φ𝐵 =

∫
𝐵 · 𝑑𝐴

En un campo uniforme, cada “término” en la suma infinita es idéntico y por ende

Φ𝐵 = 𝐵 · 𝐴

La fuerza electromotriz actúa sobre las cargas eléctricas microscópicas (portadores de
carga, usualmente electrones) que se encuentran libres dentro del material conductor del
circuito. Debe pensarse como una "bomba"(fuerza) que empuja el agua (carga) dentro
de una manguera (circuito), creando corriente.

Cuidadito. Hay varias áreas 𝐴 en juego. Está el área de la sección del alambre de cobre,
i.e. el grosor del alambre. Esto es lo que nos dice el enunciado 10 que vale 1mm2. Luego
está el área del “túnel” formado por el solenoide. Esta es el área del flujo magnético.

Solución. Nos dicen que la corriente decrece linealmente de su valor inicial a su valor
final, con lo cual

𝑑𝐼

𝑑𝑡
=
Δ𝐼

Δ𝑡

Como 𝐼 es un factor lineal de 𝐵, y todos los otros factores de 𝐵 son constantes, se sigue
que 𝐵 se comporta como un factor lineal de Φ:
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𝑑Φ

𝑑𝑡
=
𝑑Φ

𝑑𝐼

𝑑𝐼

𝑑𝑡

=
ΔΦ

Δ𝐼

Δ𝐼

Δ𝑡

=
ΔΦ

Δ𝑡

=
Φfinal −Φinicial

1s

Obviamente, Φfinal = 0 porque en ese momento la corriente es nula. Por ende, solo queda
calcular Φinicial.

El campo en un solenoide ideal es uniforme. Por ende, Φinicial = 𝐵 · 𝐴, donde 𝐴 denota
el área del soneloide (el “túnel”). Según el enunciado 10, el solenoide tiene 1cm de
diámetro y por ende su radio es 1cm/2 = 1

200m. Por ende, el área es 𝐴 = ( 1
200m)2𝜋 =

𝜋
40000m2 = 𝜋

4 × 10−4m2.

Φinicial = 𝐵 · 𝐴

= 7,84313725493 × 10−4T × 𝜋

4
× 10−4 m2

= 6,1599855953 × 10−8 Tm2

= 6,1599855953 × 10−8 Wb

Por lo tanto,

𝑑Φ

𝑑𝑡
= −Φ

Δ𝑡
= −6,1599855953 × 10−8 Wb/s

Entonces

FEM = −𝑁2
𝑑Φ

𝑑𝑡
= 20 × 6,1599855953 × 10−8Wb/s

= 2 × 6,1599855953 × 10−7Wb/s
= 12,3199711906 × 10−7V
≈ 1,232 × 10−6V
= 1,232 × 𝜇V

108



12. Una espira se desplaza a velocidad 𝑣 dentro de un campo magnético de forma tal que
su movimiento es perpendicular al campo.

(a) ¿Cuánto vale la fuerza electromotriz inducida?

(b) ¿Cómo cambia este resultado si el movimiento es paralelo al campo?

(𝑎) La fuerza electromotriz es

E = −𝑁2
𝑑Φ

𝑑𝑡

Pero el campo es constante y por ende 𝑑Φ/𝑑𝑡 = 0. Por ende, la fuerza electromotriz es
nula.

(𝑏) Same por el argumento anterior.
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13. Una espira rectangular de 10cm de ancho se mueve saliendo de una región con un
campo magnético perpendicular al plano de la espira. Si la fuerza electromotriz inducida
en la espira es de 1V y el campo de 1T, ¿cuánto vale la velocidad?

Teoría. Mostraremos otra forma de ver a la fuerza electromotriz. La Ley de Faraday nos
dice que la FEM depende del cambio del flujo magnético.

Φ = ®𝐵 · ®𝐴

Si el campo 𝐵 es perpendicular al área de una espira y es constante (uniforme), el flujo
es simplemente el campo por el área efectiva que está dentro del campo:

Φ = 𝐵 · 𝐴(𝑡)

Asumamos que una espira rectangular de altura 𝐿 se está moviendo con velocidad 𝑣. Sea
𝑥(𝑡) la longitud horizontal de la espira que todavía está dentro del campo magnético. El
área dentro del campo es:

𝐴(𝑡) = 𝐿 · 𝑥(𝑡)

Por lo tanto, el flujo es:

Φ = 𝐵 · 𝐿 · 𝑥(𝑡)

Ahora aplicamos la fórmula general (asumiendo 𝑁2 = 1 vuelta):

E = −𝑑Φ
𝑑𝑡

Sustituimos Φ:

E = − 𝑑
𝑑𝑡

(𝐵 · 𝐿 · 𝑥(𝑡))

Como 𝐵 y 𝐿 son constantes, salen de la derivada:

E = −𝐵 · 𝐿 · 𝑑𝑥
𝑑𝑡
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Pero 𝑑𝑥/𝑑𝑡 = 𝑣 por definición. Como la espira está saliendo, la distancia 𝑥 se está
reduciendo a la velocidad del movimiento.

𝑑𝑥

𝑑𝑡
= −𝑣

(Es negativo porque la longitud 𝑥 dentro del campo disminuye). Sustituimos esto en la
ecuación anterior:

E = −𝐵 · 𝐿 · (−𝑣)
E = 𝐵 · 𝐿 · 𝑣

Solución. Nos dan la fuerza electromotriz. Sabemos que, en este caso particular, dicha
fuerza es

E = 𝐵𝐿𝑣

que son todas cantidades conocidas. Despejar 𝑣 y estamos.
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14. Una espira rectangular de dimensiones 𝑙 y 𝑤 se mueve con una velocidad constante 𝑣
alejándose de un alambre largo que conduce una corriente 𝐼 en el plano de la espira cuya
resistencia total es 𝑅. El alambre conductor es paralelo al lado 𝑙 de la espira. Deduzca
una expresión para la corriente en la espira en el instante en que el lado cercano esté a
una distancia 𝑟 del alambre.

Alambre

𝐼

𝑤

𝑙

𝑥(𝑡)

®𝑣

×

×

×

×

×

×

×

×
®𝐵𝑖𝑛
𝐼𝑖𝑛𝑑

Estrategia. Tenemos que involucrar todas las variables y dar una ecuación para 𝐼. La
ley de Ohm nos da 𝐼 = 𝑉/𝑅. El voltaje de una espira que se mueve en un campo es la
fuerza electromotriz E , así que 𝐼 = E/𝑅. La idea es dar una expresión para E .

Solución. Sea 𝑖 la dirección de ®𝑣, 𝑗 la del cable (hacia arriba), 𝑘̂ hacia .adentro".

En cada punto 𝑃 a una distancia 𝑟 del cable, el campo magnético generado por el cable
hace una fuerza por unidad de carga:

®𝐵campo =
𝜇0𝐼

2𝜋𝑟
𝑘̂

Además, sabemos que

E = −𝑑Φ
𝑑𝑡

donde
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Φ(𝑟) =
∫

Área de la espira
𝐵 𝑑𝐴

=

∫ 𝑟+𝑤

𝑟

𝐵𝑙 𝑑𝑥

=
𝜇0𝐼 · 𝑙

2𝜋

∫ 𝑟+𝑤

𝑟

1
𝑟 (𝑥) 𝑑𝑥

=
𝜇0𝐼 · 𝑙

2𝜋

∫ 𝑟+𝑤

𝑟

1
𝑥
𝑑𝑥

=
𝜇0𝐼 · 𝑙

2𝜋
[ln(𝑟 + 𝑤) − ln(𝑟)]

=
𝜇0𝐼 · 𝑙

2𝜋
ln

(𝑟 + 𝑤
𝑟

)
Todas las variables están involucradas, excepto 𝑣. Pero 𝑣 aparece implícita en la ley de
Faraday:

E = −𝑑Φ
𝑑𝑡

= −𝑑Φ
𝑑𝑟

𝑑𝑟

𝑑𝑡
= −𝑑Φ

𝑑𝑟
𝑣

La derivada de Φ respecto de 𝑟 se puede calcular, pues ya encontramos Φ(𝑟):

E = −𝑣 · 𝑑
𝑑𝑟

[
𝜇0𝐼𝑙

2𝜋
ln(𝑟 + 𝑤) − ln(𝑟)

]
= −𝜇𝐼𝑙𝑣

2𝜋

(
1

𝑟 + 𝑤 − 1
𝑟

)
Recordemos que la fuerza electromotriz es un voltaje, no una fuerza en newtons. Por
Ley de Ohm, 𝐼 = 𝑉/𝑅. Por ende,

𝐼 =
E
𝑅

=

− 𝜇𝐼𝑙𝑣

2𝜋

(
1
𝑟+𝑤 − 1

𝑟

)
𝑅

Pero qué asco de ejercicio, no me quedan ganas ni de simplificar la expresión de arriba.
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15. Un conductor cilíndrico de radio 𝑅 transporta una corriente 𝐼 distribuída uniforme-
mente sobre toda la sección transversal del conductor. Encuentre el campo magnético
como función de la distancia 𝑟 desde el eje del conductor, de puntos situados tanto dentro
(𝑟 < 𝑅), como fuera (𝑟 > 𝑅) del conductor.

Teoría. La ley de Ampere establece que la integral de línea del campo magnético B a
lo largo de una trayectoria cerrada imaginaria (llamada "bucle amperiano") es igual a
la permeabilidad del vacío multiplicada por la corriente neta que atraviesa la superficie
delimitada por dicha trayectoria. Matemáticamente:∮

B · 𝑑l = 𝜇0𝐼enc

Donde:
∮

B · 𝑑l es la suma del campo magnético a lo largo del camino cerrado e 𝐼enc es
la corriente encerrada por el camino elegido.

Solución (Caso 𝑟 > 𝑅). Imaginemos una circunferencia de radio 𝑟 > 𝑅 formada alrede-
dor de algún punto arbitrario del eje conductor. Dicha circunferencia es una trayectoria
cerrada y podemos tomarla como bucle amperiano. Sabemos entonces que el campo
magnético B en dicha circunferencia satisface∮

B · 𝑑l = 𝜇0𝐼enc

con 𝐼enc la corriente encerrada por el camino elegido. Dicha corriente no es más que la
corriente 𝐼, pues la misma se distribuye uniformemente sobre toda la sección transversal
del conductor. Ahora bien,

B · 𝑑l = |B| |𝑑l| cos 𝜃

Por la regla de la mano derecha, B “gira” alrededor del cable y por ende es paralelo en
todo punto al vector 𝑑l, con lo cual cos 𝜃 = 1. Por ende,∮

B · 𝑑l =
∮

𝐵 𝑑𝑙

La fuerza del campo 𝐵 depende solo de la distancia 𝑟, y por ende 𝐵 es constante en la
integral anterior, obteniendo∮

B · 𝑑l =
∮

𝐵 𝑑𝑙 = 𝐵

∮
𝑑𝑙 = 𝐵 · (2𝜋𝑟)
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donde la integral da 2𝜋𝑟 porque es la longitud (perímetro) de una circunferencia de radio
𝑟. De todo lo anterior se sigue que

𝐵 · 2𝜋𝑟 = 𝜇0𝐼 ⇒ 𝐵(𝑟) = 𝜇0𝐼

2𝜋𝑟

(Caso 𝑟 < 𝑅). Lo único que cambia ahora es que, como nuestra circunferencia imagina-
ria está dentro del conductor, no capta toda la corriente distribuida en él, sino solo una
fracción de la misma. Para encontrar cuánta corriente hay en un punto particular, toma-
mos un una slice del conductor (como si lo cortáramos como un salamín!) y dividimos
la cantidad total de corriente por el área total del slice:

𝐽 =
Corriente en el slice

Área del slice
=

𝐼

𝜋𝑅2

𝐽 es la densidad de corriente, es cuánta corriente hay en un punto particular. Ahora bien,
si en un punto particular hay una corriente 𝐽, en una circunferencia de radio 𝜋𝑟2 hay
𝐽 · 𝜋𝑟2 de corriente:

𝐼enc = 𝐽 · 𝜋𝑟2 =

(
𝐼

𝜋𝑅2

)
𝜋𝑟2 = 𝐼

( 𝑟
𝑅

)2

La integral de campo sigue valiendo 𝐵 · 2𝜋𝑟, con lo cual la Ley de Ampere ahora nos da

𝐵 · 2𝜋𝑟 = 𝜇0𝐼
( 𝑟
𝑅

)2
⇒ 𝐵(𝑟) = 𝜇0𝐼𝑟

2

2𝜋𝑟 · 𝑅2 =
𝜇0𝐼𝑟

2𝜋𝑅2
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7. Parcial 1 - 2025
Problema 1. En un partido de fútbol femenino, que se juega sobre piso de arena,
una jugadora frente al arco, ve que éste está desguarnecido y patea la pelota, con una
velocidad inicial de módulo igual a 24 m/s formando un ángulo de 30◦ con la horizontal,
intentando convertir el gol. Debido a que existe un fuerte viento la pelota experimenta,
además de la aceleración de la gravedad, una aceleración horizontal de 2 m/s2 en sentido
opuesto a su dirección de movimiento. Sabiendo que el arco, de 2,44 m de altura, está
ubicado a 45 m de donde parte la pelota, que en la arena, y al impactar con el piso,
la pelota no se desplaza horizontalmente, que la aceleración de la gravedad es igual a
10 m/s2:

(a) Dibuje un esquema de la situación y el sistema de coordenadas elegido.

(b) Escriba los vectores aceleración, velocidad y posición de la pelota mientras la
pelota está en vuelo.

(c) Calcule la altura máxima que alcanza la pelota.

(d) Determine si la jugadora logra convertir el gol. Realice todos los cálculos necesa-
rios para justificar su respuesta.

(e) Si no hubiese existido la aceleración horizontal provocada por el viento, ¿la juga-
dora habría convertido el gol? Realice todos los cálculos necesarios para justificar
su respuesta.

(f) En el esquema del ítem (a), grafique cualitativamente la trayectoria en el caso de
que existe aceleración horizontal y dibuje los vectores velocidad y aceleración en
dos puntos cualquiera de la misma.

Solución. (𝑎, 𝑓 ) Elegimos un sistema de coordenadas con el origen coincidendo con la
posición inicial de la pelota.
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(𝑏) Sabemos:

1. 𝑎𝑦 = −𝑔m/s2

2. 𝑎𝑥 = −2m/s2

3. 𝑣𝑧 (𝑡) = 𝑣0𝑧 + 𝑎𝑧𝑡, 𝑧 ∈ {𝑥, 𝑦} (movimiento rectilíneo en cada dirección).

4. 𝑧(𝑡) = 𝑧0 + 𝑣0𝑧𝑡 + 1
2𝑎𝑧𝑡

2 (movimiento rectilíneo en cada dirección).

5. 𝑣0𝑥 = 𝑣0 cos 𝜃, 𝑣0𝑦 = 𝑣0 sin 𝜃.

6. 𝑥0 = 0, 𝑦0 = 0.

Por lo tanto,

−→𝑎 (𝑡) = −2 m/s2 𝑖 − 𝑔 m/s2 𝑗
−→𝑣 (𝑡) = [𝑣0 cos 𝜃 − 2𝑡] 𝑖 + [𝑣0 sin 𝜃 − 𝑔𝑡] 𝑗
−→𝑟 (𝑡) =

[
𝑣0 cos 𝜃 · 𝑡 − 𝑡2

]
𝑖 +

[
𝑣0 sin 𝜃 · 𝑡 − 𝑔

2
𝑡2

]
𝑗

(𝑐) La altura máxima en el movimiento parabólico es dada por
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𝐻 =
𝑣2

0 sin2 𝜃

2𝑔

Resolviendo, obviando unidades:

𝐻 =
242 · sin2(30◦)

2 · 10
= 7,2m

(𝑑) Para determinar si hace el gol, debemos determinar la altura en el momento en que su
distancia horizontal es 45m. El tiempo 𝑡0 en que la pelota recorre 45 metros horizontales
satisface

𝑟𝑥 (𝑡0) = 45m

Es decir, obviando unidades,

𝑣0 cos 𝜃 · 𝑡0 − 𝑡20 = 45
⇐⇒ − 𝑡20 + 24 · cos(30◦) · 𝑡0 − 45 = 0
⇐⇒ − 𝑡20 + 20,78𝑡0 − 45 = 0

⇐⇒ 𝑡0 =
−20,73 ±

√︁
20,782 − 4 · 45
−2

⇐⇒ 𝑡0 ∈ {2,4555s, 18,3s}

donde nos quedamos con la menor solución (la segunda es el tiempo que tardaría la
pelota en retornar a la distancia de 45m tras haberla recorrida ya, por acción del viento.)

Ahora observamos que

𝑟𝑦 (𝑡0) = 𝑟𝑦 (2,4555)

= 12 · 2,4555 − 10
2

· 2,45552

= −0,681 m

Es decir que la pelota ya ha tocado el suelo (𝑟𝑦 = 0) en algún momento 𝑡 < 𝑡0. La pelota
no llega al arco.
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(𝑒) Si no existiera aceleración horizontal, 𝑟𝑥 (𝑡) sería 𝑟𝑥 (𝑡) = 𝑣0 cos 𝜃 · 𝑡, pues la acele-
ración igual a cero anularía el factor cuadrático. En este caso,

𝑟𝑥 (𝑡1) = 45
⇐⇒ 20,78𝑡1 = 45

⇐⇒ 𝑡1 =
45

20,78
⇐⇒ 𝑡1 = 2,165 s

La altura en dicho punto es

𝑟𝑦 (2,165) = 12 · 2,165 − 10
2

2,1652 = 2,543 m

Como 0 < 2,543 < 7, la pelota entra en el arco.
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Problema 2. Una bolita 𝑏1 de masa 𝑚 se encuentra en reposo en una loma, a una altura
ℎ, como se muestra en la figura. En un instante comienza a descender y choca con
otra bolita idéntica, denotada 𝑏2, que se encuentra en reposo en el punto 𝐴. Considere
que el choque es perfectamente elástico. La bolita 𝑏2 atraviesa un tramo del camino
delimitado por los puntos 𝐵 y 𝐶 donde se ve afectada por el rozamiento con el piso
(coeficiente de rozamiento 𝜇𝑑). En el extremo final de la pista se encuentra un resorte
de constante elástica 𝑘 y longitud natural ℓ0. La altura de la pista cumple la siguiente
relación ℎ = 4𝜇𝑑𝐿𝐵𝐶 .

(𝑎) Calcular la velocidad 𝑣2𝐵 de la bola 𝑏2 en el punto B. Describa que pasa con la bola
𝑏1 tras el choque.

(𝑏) Calcule la longitud ℓ del resorte en su máxima compresión. Obtenga el trabajo hecho
por el resorte durante su compresión e interprete el resultado.

(a) En el choque perfectamente elástico se preserva la energía cinética. Un corolario de
esto es que, como la bola 𝑏2 está quieta (velocidad nula) y las masas son idénticas, la
bola 𝑏1 “transferirá” toda su velocidad a la bola 𝑏2 en el momento del impacto. Por ende,
calcular la velocidad de 𝑏2 en el punto 𝐵 equivale a calcular la velocidad de la bola 𝑏1
cuando termina de descender por la pendiente.

En el momento inicial, la energía potencial de la bola 𝑏1 es dada por su altura y es 𝑚𝑔ℎ.
Su energía cinética es nula. Al bajar la pendiente por completo, toda la energía potencial
se transforma en energía cinética. Por conservación de la energía mecánica (pues no
han actuado fuerzas no-conservativas), usando 𝐸1 para denotar el instante en que 𝑏1 ha
descendido la pendiente:

𝐸0 = 𝐸1

∴ 𝑈0 = 𝐾1. Lo cual equivale a decir 𝑚𝑔ℎ = 1
2𝑚𝑣

2
1, con 𝑣1 la velocidad de la bola 1 al

haber terminado el descenso. Se sigue que:
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𝑣1 =
√︁

2𝑔ℎ

Esta es la velocidad inicial de la bola 𝑏2 en el punto 𝐵.

(b) La bola 𝑏2 continuará su recorrido, desacelerándose como consecuencia del roza-
miento en el tramo 𝐿𝐵𝐶 , de manera tal que a partir del punto 𝐶 su velocidad será menor
a 𝑣1. La pelota eventualmente toca el resorte y lo comprime, hasta que en un instante se
detiene completamente. A dicho instante lo llamo instante final.

El rozamiento ocasiona una pérdida de energía. Por ende, la energía en el instante final
es:

𝐸final = 𝐸1 +𝑊fnc

Sabemos que 𝐸1 = 𝐾1 = 1
2𝑚𝑣

2
1 = 𝑚𝑔ℎ. Y sabemos que 𝐸final = 𝑈𝑅 = 1

2 𝑘𝑥
2, pues no hay

movimiento y el resorte está comprimido una distancia 𝑥.

El trabajo realizado por la fuerza de rozamiento (𝑊𝑅) en el tramo 𝐵𝐶 es:

𝑊𝑅 =
−→
𝐹 𝑅 · Δ−→𝑟 = −𝜇𝑑𝑚𝑔𝐿𝐵𝐶

Sabemos que ℎ = 4𝜇𝑑𝐿𝐵𝐶 . Por lo tanto,

𝜇𝑑𝐿𝐵𝐶 =
ℎ

4
=⇒ 𝑊𝑅 = −𝑚𝑔

(
ℎ

4

)
Continuamos:

𝐸final − 𝐸1 = 𝑊𝑅

𝑈 𝑓 − 𝐾1 = 𝑊𝑅

1
2
𝑘𝑥2 − 𝑚𝑔ℎ = −1

4
𝑚𝑔ℎ

Simplificando:
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1
2
𝑘𝑥2 = 𝑚𝑔ℎ − 1

4
𝑚𝑔ℎ

1
2
𝑘𝑥2 =

3
4
𝑚𝑔ℎ

𝑘𝑥2 =
3
2
𝑚𝑔ℎ

𝑥2 =
1,5𝑚𝑔ℎ
𝑘

𝑥 =

√︂
1,5 𝑚𝑔ℎ

𝑘

Como la longitud natural del resorte es ℓ0, la longitud final del resorte en su máxima
compresión será ℓ 𝑓 = ℓ0 − 𝑥. Es decir:

ℓ 𝑓 = ℓ0 −
√︂

1,5 𝑚𝑔ℎ
𝑘

Sabemos que el trabajo realizado por un resorte que se compre una distancia 𝑥 tiene
magnitud

|𝑊 | = 1
2
𝑘𝑥2 = 𝑈 𝑓

Como el resorte durante su compresión se opone al movimiento, el trabajo es negativo.
Por ende,

𝑊 = −1
2
𝑘𝑥2 = −1

2
𝑘

1,5 𝑚𝑔ℎ
𝑘

= −0,75 𝑚𝑔ℎ J
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Problema 3. En el sistema que se muestra en la figura a continuación, el bloque A
pesa 40 N y el B pesa 80 N. El coeficiente de rozamiento dinámico entre superficies es
𝜇𝑑 = 0,25 y el estático 𝜇𝑒 = 0,4. Se solicita calcular la fuerza ®𝐹 necesaria para arrastrar
el bloque B hacia la izquierda con velocidad constante (despreciar el rozamiento en la
polea) para lo cual:

(a) Realice el diagrama de cuerpo aislado para cada uno de los bloques teniendo en
cuenta todas las fuerzas que actúan sobre los mismos.

(b) Calcular la fuerza ®𝐹 suponiendo que sólo existe roce entre los bloques.

(c) Calcular la fuerza ®𝐹 considerando para este caso adicionalmente la existencia de
roce con el suelo.

(𝑎) Sobre la masa 𝐴 actúan:
−→
𝑁 𝐴 = 𝑁𝐴 𝑗 , fuerza normal por el contacto con 𝐵.
−→
𝑇 = 𝑇𝑖 la fuerza de la soga.
−→
𝑅 𝐴 = −𝑅𝐴 𝑖 el rozamiento con el bloque 𝐵 que se opone al movimiento.
−→
𝐺 𝐴 = −𝑚𝐴𝑔 𝑗 .

Sobre la masa 𝐵 actúan:
−→
𝑁 𝐵 = 𝑁𝐵 𝑗 , fuerza noromal por el contacto con el suelo.
−→
𝐶 = −𝐶 𝑗 , fuerza normal con dirección hacia abajo por el contacto con 𝐴.
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−→
𝑇 = 𝑇𝑖 la fuerza de la soga.
−→
𝑅 𝐴 = 𝑅𝐴 𝑖 el rozamiento que se opone al movimiento, que combina rozamiento
con el suelo y con el bloque A.
−→
𝐺 𝐵 = −𝑚𝐵𝑔 𝑗 .
−→
𝐹 = −𝐹 𝑖, la fuerza externa aplicada.

Esto es suficiente para dibujar los diagramas de cuerpo aislado.

(𝑏) Asumamos que 𝐵 se mueve con velocidad constante. Debería ser claro entonces que
𝑎 también se mueve con velocidad constante. En particular, 𝐴 satisface

∑︁
𝐴

−→
𝐹 = 0

⇐⇒ 𝑁𝐴 𝑗 + 𝑇𝑖 − 𝑅𝐴𝑖 − 𝑚𝐴𝑔 𝑗 = 0
⇐⇒ (𝑇 − 𝑅𝐴) 𝑖 + (𝑁𝐴 − 𝑚𝐴𝑔) 𝑗
⇐⇒ (𝑇 − 𝜇𝑑𝑁𝐴) 𝑖 + (𝑁𝐴 − 𝑚𝐴𝑔) 𝑗

⇐⇒
{
𝑇 = 𝜇𝑑𝑁𝐴

𝑁𝐴 = 𝑚𝐴𝑔

Notar que al usar el coeficiente dinámica 𝜇𝑑 , estamos asumiendo que hay movimiento.
(De otro modo, la suma de las fuerzas podría ser cero... pero porque la velocidad y la
aceleración son ambas nulas!) De este resultado se sigue:

𝑇 = 𝜇𝑑𝑚𝐴𝑔

Ahora bien, usando el mismo razonamiento:

∑︁
𝐵

−→
𝐹 = 0

⇐⇒ 𝑁𝐵 𝑗 − 𝐶 𝑗 + 𝑇𝑖 + 𝑅𝐵𝑖 − 𝑚𝐵𝑔 𝑗 − 𝐹𝑖 = 0

Como asumimos que no hay rozamiento con el suelo, 𝑅𝐴 = 𝑅𝐵. Ahora bien, la fuerza
normal −→𝑁𝐵 se opone a todas las fuerzas paralelas a la gravedad, i.e. las fuerzas de
gravedad y contacto se cancelan con la normal (son cero). Entonces se simplifica:
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𝑇 𝑖 + 𝑅𝐵𝑖 − 𝐹𝑖 = 0
⇐⇒ 𝐹 = 𝑇 + 𝑅𝐵
⇐⇒ 𝐹 = 𝜇𝑑𝑚𝐴𝑔 + 𝜇𝑑

���−→𝐶 ���
Notar que, como el rozamiento es entre A y B, la fuerza del rozamiento depende de la
magnitud del vector de contacto. Así como el rozamiento con el suelo depende de la
magnitud del vector normal. La magnitud del contacto es simplemente dada por el peso
de 𝐴. Concluimos:

𝐹 = 𝜇𝑑𝑚𝐴𝑔 + 𝜇𝑑𝑚𝑎𝑔 = 2𝜇𝑑𝑚𝐴𝑔

(𝑐) Si hay rozamiento en ambos lados, no se cumple 𝑅𝐵 = 𝑅𝐴, sino 𝑅𝐵 = 𝑅𝐵 + 𝑅suelo.
Esto nos da

𝑅𝐵 = 𝜇𝑑

���−→𝐶 ��� + 𝜇𝑑 ���−→𝑁 𝐵

���
= 𝜇𝑑 (𝑚𝐴𝑔 + (𝑚𝐴𝑔 + 𝑚𝐵𝑔))
= 𝜇𝑑𝑔 (2𝑚𝐴 + 𝑚𝐵)

pues la fuerz normal de 𝐵, como ya dĳimos, se opone a la fuerza de contacto y a la
gravedad. En conclusión,

𝐹 = 𝑇 + 𝑅𝐵
⇐⇒ 𝜇𝑑𝑚𝐴𝑔 +𝑑 ·2𝑚𝐴𝑔 + 𝜇𝑑𝑔𝑚𝐵

⇐⇒ 3𝜇𝑑𝑚𝐴𝑔 + 𝜇𝑑𝑔𝑚𝐵

En un examen real, habría que sacar las cuentas. Pero esa es la parte tonta.
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8. Parcial 2 - 2025
Problema 1. Considere la distribución de cargas que se muestra en la figura a continua-
ción. Considerando que las cargas están fijas, determine:

(a) El campo eléctrico total ®𝐸𝑝 en el punto 𝑃 debido a las tres cargas. Indicar la
expresión vectorial del campo en términos de 𝑞 y 𝐿 sabiendo que las coordenadas
del punto son (3𝐿, 4𝐿). Dibuje el vector campo eléctrico total en el punto 𝑃.

(b) El trabajo que debe realizar un agente externo para traer una carga de prueba 𝑞0
desde el infinito hasta el punto 𝑃, considerando que el potencial en el infinito es
cero.

(c) El trabajo realizado por el campo eléctrico cuando la carga 𝑞0 se traslada desde el
infinito hasta el punto 𝑃.

(𝑎) Hay que calcular la distancia que tiene 𝑃 con cada carga.

Debería ser fácil notar que dichas distancias son

𝑟+ =
√︁
(3𝐿)2 + (3𝐿)2 =

√︁
18𝐿2 =

√
2 · 9𝐿 = 3

√
2𝐿

𝑟𝑜 =
√︁
(3𝐿)2 + (4𝐿)2 =

√︁
25𝐿2 = 5𝐿

𝑟− =
√︁
(2𝐿)2 + (4𝐿)2 =

√
20𝐿 = 2

√
5𝐿
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Ahora que tenemos las distanacias, i.e. las magnitudes de los vectores que apuntan desde
cada carga al punto, determinamos los vectores unitarios (de dirección), imaginando que
cada uno parte del origen.

𝑟+ =
3𝐿𝑖 + 3𝐿 𝑗

3
√

2𝐿
=

1
√

2
𝑖 + 1

√
2
𝑗

𝑟𝑜 = −3𝐿𝑖 + 4𝐿̂ 𝑗
5𝐿

= −3
5
𝑖 − 4

5
𝑗

𝑟− = −2𝐿𝑖 + 4𝐿 𝑗
2
√

5𝐿
= − 1

√
5
𝑖 − 2

√
5
𝑗

Veamos que

El campo generado será la suma de los campos:

𝐸 =
−→
𝐸 + +

−→
𝐸 − + −→

𝐸 𝑜

= 𝜅
𝑞

𝑟2
+
𝑟+ + 𝜅

𝑞

𝑟2
−
𝑟− + 𝜅3𝑞

𝑟2
𝑜

𝑟𝑜

= 𝜅
𝑞

18𝐿2 𝑟+ + 𝜅
𝑞

20𝐿2 𝑟− + 𝜅 3𝑞
25𝐿2 𝑟𝑜

=
𝑘𝑞

𝐿2

[
1
18

(𝑟+) +
3
25

(𝑟𝑜) +
1
20

(𝑟−)
]

≈ 𝑘𝑞

𝐿2

[
−0,055𝑖 − 0,101 𝑗

]
=
𝑘𝑞

𝐿2
−→𝑤

con −→𝑤 = (−0,055,−0,101).

(𝑏) El trabajo realizado por un campo al mover una carga 𝑞0 es

𝑊campo = −Δ𝑈 = −𝑞0Δ𝑉

El trabajo que debemos realizar para mover una carga hacia la fuente del campo debe
precisamente contrarrestar el del campo. Por ende, es
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𝑊 = 𝑞0Δ𝑉 = 𝑞0(𝑉𝑃 −𝑉∞) = 𝑞0(𝑉𝑃 − 0) = 𝑞0𝑉𝑃

donde 𝑉𝑃, el potencial en el punto 𝑃, es la suma de los potenciales generados por cada
carga:

𝑉𝑃 = 𝑘
(+𝑞)
3
√

2𝐿︸  ︷︷  ︸
Carga de arriba

+ 𝑘
(−3𝑞)

5𝐿︸   ︷︷   ︸
Carga del origen

+ 𝑘
(−𝑞)
2
√

5𝐿︸  ︷︷  ︸
Carga de la derecha

=
𝑘𝑞

𝐿

(
1

3
√

2
− 3

5
− 1

2
√

5

)

Que de igual modo no se puede simplificar demasiado porque 𝐿 y 𝑞 son desconocidas.
Lo dejamos así.

(𝑐) El trabajo realizado por el campo ya se dĳo que es𝑊campo = −𝑞0Δ𝑉 = −𝑞0𝑉𝑃.
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2. Considere el circuito de la figura adjunta. El mismo contiene 2 resistencias, 𝑅1 = 2kΩ
y 𝑅2 = 3kΩ, y 2 condensadores, 𝐶1 = 2𝜇F y 𝐶2 = 3𝜇F, conectados a una batería de
120V. Los condensadores están completamente descargados al momento de cerrar el
interruptor S. Determine:

(a) El circuito equivalente (1 capacitor, 1 resistencia y la fuente).

(b) ¿Cuál es la constante de tiempo del circuito equivalente?

(c) La carga total almacenada en el circuito y el tiempo para el cual se alcanza un
quinto de este valor.

(d) Las cargas 𝑞1 y 𝑞2 almacenadas en los capacitores 𝐶1 y 𝐶2 respectivamente
después de un tiempo muy largo.

(e) La diferencia de potencial 𝑉 entre los puntos: i- 𝑏𝑐, ii- 𝑑𝑒, iii- 𝑏𝑒. ¿Cómo se
relacionan estas tres cantidades?

𝑎

𝑏

𝑅1

𝑅2

𝑐 𝑑

𝐶1

𝐶2

𝑒

𝑓
E𝑆

+ −

(𝑎) El circuito equivalente es con una sola capacitancia y una sola resistencia es

|-- RESISTENCIA --- CAPACITANCIA ---|
| |
| |
|----------- Voltaje ---------------|

con 𝑅12 = 6/5kΩ, 𝐶12 = 5𝜇F.
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(𝑏) La constante de tiempo de un circuito es 𝜏 = 𝑅 · 𝐶. En nuestro caso, esto da

6
5

kΩ · 5𝜇F = 6ΩF k𝜇

= 6s · 103 · 10−6

= 6 × 10−3s
= 6ms

(𝑐) Sabemos que 𝑉 =
𝑄

𝐶
. Entonces 𝑄 = 𝑉𝐶. Entonces

𝑄 = 120V · 5 × 10−6 F
= 600C × 10−6

= 6 × 10−4C

La carga almacenada en un circuito obedece

𝑞(𝑡) = 𝑄max

(
1 − 𝑒−𝑡/𝜏

)
Entonces el tiempo 𝑡0 tal que la carga es un quinto del valor hallado satisface

1
5
· (6 × 10−4C) = (6 × 10−4C)

(
1 − 𝑒−𝑡0/𝜏

)
⇐⇒ 𝑒−𝑡0/𝜏 =

4
5

⇐⇒ − 𝑡0/𝜏 = ln
(
4
5

)
⇐⇒ 𝑡0 = −𝜏 ln

(
4
5

)
⇐⇒ 𝑡0 = −6 × 10−3 × ln(4

5
)

⇐⇒ 𝑡0 = 0,0013388613s
⇐⇒ 𝑡0 ≈ 1,34ms
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(𝑑) Después de un tiempo muy largo la carga del circuito total es máxima. Los capacitores
en paralelo tienen el mismo voltaje. Por ende,

𝑄1 = 𝑉 · 𝐶1

= 120 × 2 × ×10−6 C
= 240 × 10−6C
= 2,4 × 10−4 C

La carga en el otro capacitor debe ser la carga total menos la carga 𝑄1, o sea (6− 2,4) ×
10−4C = 3,6 × 10−4C.

(𝑒) Entre 𝑏 y 𝑐 no circula corriente por estar cerrada la llave. Por ley de Ohm, el voltaje
es cero. La suma del voltaje de los componentes debe ser el voltaje de la fuente, por ende
entre 𝑒 y 𝑑 el voltaje es 120V.
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3. Una varilla con 0,720 kg de masa descansa sobre dos rieles paralelos como en la
figura, que están separados por un valor 𝑑 = 12,0 cm y tiene una longitud 𝐿 = 45,0 cm
de largo. La varilla conduce una corriente 𝐼 = 48,0 A en la dirección que se muestra y
desliza sobre los rieles. Perpendicularmente a la varilla y a los rieles existe un campo
magnético uniforme de magnitud 0,240 T.

(a) Indique la magnitud, dirección y sentido de la fuerza que el campo magnético
ejerce sobre la varilla con corriente. Indique también el vector aceleración que
adquiere la varilla debido a dicha fuerza.

(b) Si parte del reposo, ¿cuál será la velocidad de la varilla cuando llegue al final de
los rieles?

(𝑎) La magnitud de la fuerza ejercida por un campo magnético −→
𝐵 sobre un cable

conductor con corriente 𝐼 y vector de longitud y dirección de corriente −→𝐷 es

𝐹𝑚 = 𝐼

(−→
𝐷 × −→

𝐵

)
En este caso, −→𝐷 es perpendicular a −→

𝐵 y por ende el seno de sus ángulos es 1. Por lo
tanto, resulta

𝐹𝑚 = 𝐼𝐵𝑑

La dirección de la fuerza está dada por la regla de la mano derecha. La dirección es 𝑖
(hacia la derecha), tomando nuestra perspectiva en la imagen. Por ende, −→𝐹𝑚 = 𝐼𝐵𝑑 𝑖

basta para indicar dirección, magnitud y sentido. Podemos simplificar:
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−→
𝐹𝑚 = 𝐼𝐵𝑑 𝑖

= 48A · 0,24T · 0,12m
= 1,3824N 𝑖

Se nos pide también la aceleración que adquiere la varilla debido a dicha fuerza. Esto
es, por segunda ley de Newton,

𝑎 =
𝐹𝑚

𝑚

=
1,3824N
0,720kg

= 1,92 m/s2

(𝑏) Miremos la varilla como un punto que se mueve de izquierda a derecha. Su mo-
vimiento horizontal, como hemos observado, tiene una aceleración constante. El final
de los rieles se corresponde con recorrer una distanca de 𝐿 = 0,45m. La ecuación de
Torricelli garantiza que, para una aceleración constante,

𝑣2
𝑓 = 𝑣

2
0 + 2𝑎Δ𝑥

Como parte del reposo, la velocidad inicial es nula. Obtenemos

𝑣2
𝑓 = 2𝑎Δ𝑥

⇐⇒ 𝑣2
𝑓 = 2 · 1,92 · 0,45 m2/s2

⇐⇒ 𝑣 𝑓 =
√︁

2 · 1,92 · 0,45 m/s
𝑣 𝑓 ≈ 1,314m/s
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9. Parcial 1 - 2024
1. Un golfista golpea una pelota con una velocidad inicial de 48 m/s con un ángulo de 25◦
con la horizontal. Sabiendo que el terreno tiene una pendiente de 5◦ (como se muestra
en la figura), determinar:

(a) Los vectores aceleración ®𝑎(𝑡), velocidad ®𝑣(𝑡) y posición ®𝑟 (𝑡) del proyectil durante
el movimiento. Dibuje el sistema de coordenadas elegido.

(b) El tiempo en que alcanza la altura máxima,

(c) La distancia entre el golfista y el punto en que la pelota toca el piso,

(d) La velocidad con que la pelota toca el piso.

(e) Grafique las funciones 𝑥(𝑡), 𝑦(𝑡) mientras durante el movimiento. Dibuje los vec-
tores velocidad y aceleración, en el punto mas alto y justo antes de chocar contra el
piso.

Considere que la aceleración de la gravedad es 10 m/s2.

(𝑎) Elegimos un sistema de coordenadas tal que el eje 𝑥 esté alineado con la horizontal
y el origen coincide con el punto del que parte la pelota. Por lo tanto, el ángulo entre −→𝑣0
y el eje horizontal de nuestro sistema es 𝜃 = 25◦. En consecuencia,

−→𝑣0 = 𝑣0 cos 𝜃 𝑖 + 𝑣0 sin 𝜃 𝑗

La aceleración horizontal es nula y la aceleración vertical se debe estrictamente a la
gravedad y es constante: 𝑎𝑦 (𝑡) = −𝑔. La velocidad vertical 𝑣0𝑦 − 𝑔𝑡. La posición vertical
es 𝑦(𝑡) = 𝑦0 + 𝑣0𝑦𝑡 − 1

2𝑔𝑡
2.
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Como la aceleración horizontal es nula la velocidad horizontal es constante: 𝑣𝑥 (𝑡) = 𝑣0𝑥 .
La posición horizontal por ende es 𝑥(𝑡) = 𝑥0+𝑣0𝑥𝑡. Usando que 𝑥0 = 𝑦0 = 0 y los valores
de 𝑣0𝑥 , 𝑣𝑦𝑥 , obtenemos:

−→𝑎 (𝑡) = −𝑔 𝑗
−→𝑣 (𝑡) = 𝑣0 cos 𝜃 𝑖 + [𝑣0 sin 𝜃 − 𝑔𝑡] 𝑗
−→𝑟 (𝑡) = 𝑣0 cos 𝜃 · 𝑡 𝑖 +

[
𝑣0 sin 𝜃 · 𝑡 − 1

2
𝑔𝑡2

]
𝑗

(𝑏) La altura máxima es

𝐻 =
𝑣2

0 sin2 𝜃

2𝑔

=
482 · 0,4222

2 · 10
m

= 20,515 m

El tiempo 𝑡𝑚 en que se alcanza la altura máxima satisface (obviando unidades):

𝑦(𝑡𝑚) = 20,515

⇐⇒ 𝑣0 sin 𝜃 𝑡𝑚 − 1
2
𝑔𝑡2𝑚 = 20,515

⇐⇒ 48 · 0,422 𝑡𝑚 − 1
2
· 10 · 𝑡2𝑚 = 20,515

⇐⇒ 20,256𝑡𝑚 − 5𝑡2𝑚 − 20,515 = 0

Esta es una cuadrática con 𝑎 = −5, 𝑏 = 20,256, 𝑐 = −20,515. El discriminante de una
cuadrática invertida (con 𝑎 < 0) siempre es cero en el vértice. Por ende, la fórmula de
Bhaskara se simplifica a 𝑡𝑚 = − 𝑏

2𝑎 =
20,256

10 s = 2,0256s.

(𝑐) Nos piden hallar 𝑑. 𝑑 es la hipotenusa de un triángulo rectángulo formado entre el
eje 𝑥 y la pendiente, donde el ángulo recto es formado en el lado que “parte” del eje 𝑥
hacia abajo hasta tocar la pendiente en el punto en que cae la pelota. Es fácil ver que la
longitud horizontal del triángulo es 𝑑 cos𝛼, la vertical 𝑑 sin𝛼, con 𝛼 = 5◦. Esto quiere
decir que si la pelota cae en un instante de tiempo 𝑡 𝑓 , debe cumplirse que
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−→𝑟 (𝑡 𝑓 ) = 𝑑 cos𝛼 𝑖 − 𝑑 sin𝛼 𝑗

Planteando esto como un sistema de ecuaciones, significa que{
𝑣0 cos 𝜃 · 𝑡 𝑓 = 𝑑 cos𝛼
𝑣0 sin 𝜃 · 𝑡 𝑓 − 1

2𝑔𝑡
2
𝑓

= −𝑑 sin𝛼

El sistema tiene dos incógnitas y dos ecuaciones así que anda joya. Sólo despejamos. De
la primera ecuación se sigue

𝑡 𝑓 =
𝑑 cos𝛼
𝑣0 cos 𝜃

Sustituyendo en la segunda ecuación y tras una serie de simplificaciones, llegamos a

𝑣0 sin 𝜃
𝑑 cos𝛼
𝑣0 cos 𝜃

− 1
2
𝑔

(
𝑑 cos𝛼
𝑣0 cos 𝜃

)2
= −𝑑 sin𝛼

⇐⇒ tan 𝜃 cos𝛼 − 1
2
𝑔𝑑 · 𝜑2 = − sin𝛼

⇐⇒ 1
2
𝑔𝑑 · 𝜑2 = sin𝛼 + tan 𝜃 cos𝛼

⇐⇒ 𝑑 = 2 · sin𝛼 + tan 𝜃 cos𝛼
𝑔 · 𝜑2

con 𝜑 = cos𝛼
𝑣0 cos 𝜃 . Calculando, 𝜑 ≈ 0,023. Por ende,

𝑑 ≈ 208,578 m

(𝑑) Ya sabemos que 𝑡 𝑓 es el instante en que la pelota toca el piso. Podemos simplemente
calcular 𝑣(𝑡 𝑓 ).
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2. Una masa 𝑚1 = 1 kg se une a cuerda de masa despreciable e inextensible y se la hace
girar en un círculo de radio 𝑅 = 1, 5 m sobre una mesa sin fricción. El otro extremo de
la cuerda pasa por un pequeño orificio en el centro de la mesa, y una masa 𝑚2 se une a la
cuerda (ver figura). La masa 𝑚2 = 500 gr permanece suspendida en equilibrio mientras
la masa 𝑚1 gira a una velocidad angular constante. Resuelva los siguientes puntos:

(a) Realice un diagrama de cuerpo aislado de cada uno de los cuerpos.

(b) Determine la tensión 𝑇 de la cuerda.

(c) Determine la velocidad tangencial de la masa𝑚1 para que la masa𝑚2 permanezca
suspendida.

(𝑎) A la masa 1 la afectan la tensión de la cuerda (fuerza centrípeta), la gravedad y la
normal (que se cancelan). A la masa 2 la afectan la gravedad y la tensión, que deben
contrarrestarse pues dicha masa está en equilibrio.

(𝑏) Obviamente 𝑇 = 𝑚2𝑔. Si uno quiere hacer la derivación formal de esto, solo basta
notar que −→

𝑇 + −→
𝐺 2 = 𝑚2𝑎2 𝑗 por segunda ley de Newton aplicada a la masa 2. Como la

aceleración de esa masa es cero, obtenemos lo deseado.

(𝑐) Para que la masa dos permanezca suspendida, su aceleración debe ser nula, es decir
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que debe cumplirse 𝑇 = 𝑚2𝑔. 𝑇 es la tensión de la cuerda, es decir la fuerza centrípeta
de la masa 1. Es decir,

𝑎𝑐𝑚1 =
∑︁−→

𝐹 centrípeta =
−→
𝑇

Analizando en magnitud, 𝑎𝑐 = 𝑇
𝑚1

. Es decir que para que la masa 2 esté en equilibrio,
debemos tener 𝑎𝑐 = 𝑚2𝑔

𝑚1
. Dada una aceleración centrípeta, la velocidad angular satisface

𝑎𝑐 =
𝑣2

𝑅
⇐⇒ 𝑣2 = 𝑎𝑐𝑅

Por ende, asumiendo estas condiciones

𝑣2 =
𝑚2𝑔

𝑚1
· 𝑅 =

0,5kg · 9,8m/s2

1kg
· 1,5m = 7,35(m/s)2

Por ende, 𝑣 =
√

7,35m/s = 2,711m/s.
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3. Un bloque de masa 𝑚 = 0, 5 kg es empujado hacia un resorte (de masa despre-
ciable) hasta que el resorte se comprime una distancia 𝑥. La constante de fuerza
del resorte es 𝑘 = 450 N/m. A continuación se libera el bloque y el mismo viaja
por una pista sin rozamiento hacia el punto B y continua por la pista circular
de radio 𝑅 = 1m (observe la figura). La velocidad del bloque en el punto B es
𝑣𝐵 = 12 m/s. El bloque sufre a lo largo de la pista circular una fuerza de fricción
de 7N. Determine:

(a) La longitud de compresión 𝑥.

(b) El trabajo realizado para comprimir el resorte. El trabajo realizado una vez
que se libera el bloque y hasta que llega al punto B.

(c) ¿El bloque llega a la parte superior de la pista o se desprende antes? Si llega,
calcule la velocidad en la parte superior, 𝑣𝑇 , si no, calcule el punto de la pista
en el cual se despega.

(𝑎) Le energía en el momento inicial (justo antes de que la masa se dispare, con el resorte
comprimido) es estrictamente potencial (no hay movimiento pero hay compresión en el
resorte). La energía en el momento en que la masa está en 𝐵, la energía es estrictamente
cinética. No hubo rozamiento y por ende no actuaron fuerzas no-conservativas. Por ende
aplica conservación de la energía:
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𝐸0 = 𝐸𝐵

⇐⇒ 𝑈0 = 𝐾𝐵

⇐⇒ 1
2
𝑘𝑥2 =

1
2
𝑚𝑣2

𝐵

⇐⇒ 𝑥2 =
𝑚

𝑘
𝑣2
𝐵

⇐⇒ 𝑥 =

√︂
0,5
450

s212 m/s

⇐⇒ 𝑥 =
2
5

m

(𝑏) Entre el momento inicial y el momento 𝐵, solo el resorte realiza trabajo. Sabemos
entonces que 𝑊total = 𝑊resorte en dicho intervalo de tiempo. Pero 𝑊total = Δ𝐾 . Por ende
𝑊resorte =

1
2𝑚𝑣

2
𝐵
. Alternativamente, el trabajo realizado por las fuerzas conservativas (y

el resorte es una) satisface𝑊cons = −Δ𝑈 = −(𝑈 𝑓 −𝑈𝑖) = 𝑈𝑖 = 1
2 𝑘𝑥

2. Es fácil comprobar
que estas expresiones son iguales para nuestro caso. Ambas dan

1
2
𝑚𝑣2

𝐵 = 36J

(𝑐) La altura en el punto 𝑇 es 2𝑅. En el punto 𝐵, justo debajo de 𝑇 , es cero. Sabemos
que el trabajo de las fuerzas no conservativas equivale al cambio en la energía mecánica:

𝑊friccion = Δ𝐸

⇐⇒ −−→
𝐹fric · Δ−→𝑟 = 𝐸𝑇 − 𝐸𝐵

⇐⇒ − 7N · 𝜋𝑅 = (𝐾𝑇 +𝑈𝑇 ) − (𝐾𝐵 +𝑈𝐵)

⇐⇒ − 7𝜋 J =
(
1
2
𝑚𝑣2

𝑇 + 𝑚𝑔2𝑅
)
−

(
1
2
𝑚𝑣2

𝐵 + 0
)

⇐⇒ 1
2
𝑚𝑣2

𝑇 = −7𝜋 + 1
2
𝑚𝑣2

𝐵 − 𝑚𝑔2𝑅

⇐⇒ 𝑣2
𝑇 =

2
𝑚

(
−7𝜋 + 1

2
𝑚𝑣2

𝐵 − 𝑚𝑔2𝑅
)

⇐⇒ 𝑣𝑇 =

√︄
2
𝑚

(
−7𝜋 + 1

2
𝑚𝑣2

𝐵
− 𝑚𝑔2𝑅) m/s

⇐⇒ 𝑣𝑇 ≈ 4,10 m/s
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En el punto 𝑇 , la gravedad y la normal (fuerza de contacto con la superficie) empu-
jan ambas hacia abajo, formando una fuerza centrípeta. Se cumple entonces que, en
magnitud,

𝑎𝑐 = 𝑔 +
𝑁

𝑚

Pero por describir un movimiento circular, se cumple

𝑎𝑐 =
𝑣2
𝑇

𝑅

Por lo tanto,

𝑔 + 𝑁
𝑚

=
𝑣2
𝑇

𝑅

El caso límite en que la masa cae (se despega de la pista) sucede cuando la fuerza
normal es cero, porque eso significa que ya no hay contacto entre la superficie y la masa.
Entonces acá podemos sacar cuál es la velocidad que hace que 𝑁 sea igual a cero. Si
𝑁 = 0, se cumple

𝑔𝑅 = 𝑣2
𝑇 ⇒ 𝑣𝑇 =

√︁
9,8 · 𝑅 m/s ≈ 3,13 m/s

Es decir que si la velocidad baja a 3.13 metros por segundo, la fuerza de contacto
desaparece. Pero observamos que la velocidad en el punto alto es 4.10 metros por
segundo. La masa no se desprende antes de llegar a T.
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10. Parcial 2 - 2023
1. Considere el circuito de la figura en dos situaciones:

10.0 V

1.0
0 Ω

8.00
Ω

4.00
Ω 2.0

0 Ω

1.00 𝜇F

(a) Suponga que ha estado conectado durante mucho tiempo (infinito), llegando a su
estado estacionario.

En este caso: i) ¿Cuál es la corriente que circula por la fuente?, ii) ¿cuál es la
corriente que circula por el capacitor?, iii) calcule la diferencia de potencial a
través del capacitor.

(b) Considere ahora que se desconecta la batería, permitiendo la descarga del capaci-
tor.

En este caso, ¿cuánto tiempo tarda el capacitor en descargarse hasta la décima
parte de su voltaje inicial?

Solución. (𝑎) El diagrama lógico del circuito es:

h ---------g--------- f
| | |
| 1ohm 8ohm
| | |
10V d----|C|---e
| | |
| 4ohm 2ohm
| | |
a----------b----------c

Por convención diremos que la referencia (voltaje cero) está en h, de modo tal que los
nodos h, g, f tiene un voltaje de 0V. Similarmente, a, b, c tienen voltaje 10.

Por el capacitor no pasa ninguna corriente, pues ha alcanzado su equilibrio estacionario.
Sea 𝐼1 la corriente que recorre 𝑏 → 𝑔, 𝐼2 la recorre 𝑐 → 𝑓 . El tramo 𝑏 → 𝑔 se puede
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modelar como un único resistor con resistencia 5Ω, 𝑐 → 𝑓 como uno con resistencia
10Ω. Pues ambos están en paralelo, la resistencia total es (5 · 10)/15 = 10/3Ω.

Por Ley de Ohm, 𝑉 = 𝐼𝑅, i.e. 𝐼 = 𝑉/𝑅. Por ende, como 𝐼2 es la corriente que atraviesa
el resistor izquierda de resistencia 5Ω, debe satisfacer

𝐼2 =
𝑉𝑏 −𝑉𝑔

5Ω
=

10𝑉 − 0𝑉
5Ω

= 2A

Similarmente,

𝐼3 =
10𝑉
10Ω

= 1A

Por ende, la corriente total (por Ley de Kirchhoff) es 𝐼 = 𝐼1+ 𝐼2 = 3A. Alternativamente,
podríamos haber usado la Ley de Ohm sobre todo el circuito:

𝐼 =
𝑉

𝑅eq
=

10𝑉
10
3 Ω

= 3A

Ahora bien, nos piden encontrar la diferencia de potencial a través del capacitor. Es fácil
ver por Ley de Ohm que el voltaje en 𝑑 es 𝐼2 · 4Ω = 8𝑉 , y el voltaje en 𝑒 es 𝐼3 · 2Ω = 2𝑉 .
Por ende, la diferencia de potencial entre 𝑒 y 𝑑 es de 6V.

(𝑏) Sabemos que

𝑞(𝑡) = 𝑄max exp
(
− 𝑡
𝜏

)
con 𝜏 = 𝑅𝐶 define el tiempo de descarga. Aquí, 𝑄 := 𝑄max satisface 𝑉 =

𝑄

𝐶
y por ende

𝑄 = 𝐶𝑉 = 1𝜇F · 6𝑉 = 6𝜇C

pues ya calculamos que el voltaje del capacitor era 6V. Por lo tanto, el tiempo 𝑡∗ en que
el capacitor se descarga hasta la décima parte de su voltaje inicial satisface

𝑉 (𝑡∗) :=
𝑞(𝑡∗)
𝐶

=
1
10

· 6V =
3
5
𝑉

Por sustitución, esto vale si y solo si
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𝑄 exp (−𝑡∗/𝜏)
𝐶

=
3
5

V

⇐⇒ 6𝜇C · exp (−𝑡∗/𝑅𝐶)
1𝜇F

=
3
5
𝑉

⇐⇒ 6𝑉 · exp (−𝑡∗/𝑅𝐶) =
3
5
𝑉

⇐⇒ exp(−𝑡∗/𝑅𝐶) =
1
10

⇐⇒ − 𝑡∗
𝑅𝐶

= ln
(

1
10

)
⇐⇒ 𝑡∗ = − ln

(
1
10

)
𝑅𝐶

Acá hay que ser cuidadosos. Como ahora fluye energía a través del capacitor, las resis-
tencias cambian. Ahora es mejor modelar (𝑏, 𝑐, 𝑑, 𝑒) como una resistencia y (𝑑, 𝑒, 𝑔, 𝑓 )
como otra. Se cumple

𝑅𝑏𝑐𝑑𝑒 =
4 · 2

6
=

4
3
Ω, 𝑅𝑑𝑒𝑔 𝑓 =

8
9
Ω, 𝑅 = 𝑅𝑏𝑐𝑑𝑒 + 𝑅𝑑𝑒𝑔 𝑓 = 2,4Ω

Usando este valor,

𝑡∗ = − ln
(

1
10

)
𝑅𝐶

⇐⇒ 𝑡∗ ≈ (2,3025) · (2,4) · (10−6) s
⇐⇒ 𝑡∗ ≈ 5,53 𝜇s
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11. Final 2017-12-07
1. Dos masas 𝑚1 y 𝑚2 se encuentran en sendos planos inclinados, sin rozamiento y
unidos por una cuerda sin masa e inextensible tal como se indica en la figura.

(a) (5 pts.) Represente las fuerzas que intervienen sobre cada masa en sus respectivos
diagramas de cuerpo aislado.

(b) (12.5 pts.) Calcule los vectores aceleraciones de las masas. Además, indique hacia
dónde se moverá el sistema para el caso particular en que las masas sean idénticas.

(c) (12.5 pts.) ¿Qué relación debe haber entre las masas para que el sistema permanezca
en equilibrio y no deslice?. ¿Cuánto valen las tensiones de la cuerda en este caso?.

(𝑎) Una pavada, se deja al lector.

(𝑏) Definimos

𝑖′ = (cos 𝜃, sin 𝜃), 𝑗 ′ = (− sin 𝜃, cos 𝜃)

los vectores unitarios paralelo y perpendicular a la pendiente, respectivamente, con
𝜃 = 15◦. La proyección de la gravedad en componentes paralelo y perpendicular a la
pendiente, para la masa 𝑚1, es

𝐺1∥ :=
−→
𝐺1 · 𝑖′ = −𝑚1𝑔 sin 𝜃, 𝐺1⊥ :=

−→
𝐺1 · 𝑗 ′ = 𝑚1𝑔 cos 𝜃

Por ende, la aceleración de la primera masa satisface
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(𝐺1∥ + 𝑇)𝑖′ + (𝐺1⊥ + 𝑁) 𝑗 ′ = 𝑚1
−→𝑎1

⇐⇒ 𝑎1𝑥 =
−𝑚1𝑔 sin 𝜃 + 𝑇

𝑚1
, 𝑎1𝑦 =

𝑚1𝑔 cos 𝜃 + 𝑁
𝑚

donde 𝑎𝑥 , 𝑎𝑦 deben entenderse en el sistema de coordenadas definido por 𝑖′, 𝑗 ′.

Ahora nos vamos a otro sistema de coordenadas, definido por 𝑣̂ (unitario y paralelo a la
pendiente de 𝑚2, apuntando hacia abajo) y 𝑤̂ (unitario y perpendicular a la pendiente de
𝑚2, apuntando a la derecha). Más concretamente,

𝑣̂ = (sin 𝜃,− cos 𝜃), 𝑤̂ = (cos 𝜃, sin 𝜃)

Notar que −→𝑤 =
−→
𝑖′ , como es de esperar (usaremos esto pronto). De vuelta, los compo-

nentes de la gravedad en la masa 𝑚2 son

𝐺2∥ :=
−→
𝐺2 · −→𝑣 = 𝑚2𝑔 cos 𝜃, 𝐺2⊥ :=

−→
𝐺2 · −→𝑤 = −𝑚2𝑔 sin 𝜃

Por ende

(𝑚2𝑔 cos 𝜃 − 𝑇)𝑣̂ + (−𝑚2𝑔 sin 𝜃 + 𝑁)−→𝑤 = 𝑚2
−→𝑎 2

Tenemos ambas aceleraciones, una en términos de 𝑖′, 𝑗 ′, otra en términos de 𝑣̂, 𝑖′. Pero
𝑣̂ = − 𝑗 . Por ende, podemos expresar todo en el mismo sistema de coordenadas con esta
sustitución:

(−𝑚2𝑔 cos 𝜃 + 𝑇) 𝑗 ′ + (−𝑚2𝑔 sin 𝜃 + 𝑁)
−→
𝑖′ = 𝑚2

−→𝑎 2

Resumiendo:

−→𝑎1 =

{
𝑎1𝑥 =

−𝑚1𝑔 sin 𝜃+𝑇
𝑚1

𝑎1𝑦 =
𝑚1𝑔 cos 𝜃+𝑁

𝑚1

, −→𝑎2 =

{
𝑎2𝑥 =

−𝑚2𝑔 sin 𝜃+𝑁
𝑚2

𝑎2𝑦 =
−𝑚2𝑔 cos 𝜃+𝑇

𝑚2
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Claramente, la aceleración que 𝑚1 percibe en dirección de 𝑖′ debe ser la opuesta de la
que 𝑚2 percibe en dirección 𝑗 ′. Es decir, se 𝑚1 sube se debe cumplir que 𝑚2 baja, y
viceversa. Por ende,

𝑎1𝑥 = −𝑎2𝑦

⇐⇒ −𝑚1𝑔 sin 𝜃 + 𝑇
𝑚1

= −−𝑚2𝑔 cos 𝜃 + 𝑇
𝑚2

⇐⇒ − 𝑚1𝑚2𝑔 sin 𝜃 + 𝑇𝑚2 = 𝑚2𝑚1𝑔 cos 𝜃 − 𝑇𝑚1

⇐⇒ 𝑇𝑚2 + 𝑇𝑚1 = 𝑚2𝑚1𝑔 cos 𝜃 + 𝑚1𝑚2𝑔 sin 𝜃
⇐⇒ 𝑇 (𝑚2 + 𝑚1) = 𝑚1𝑚2𝑔 (sin 𝜃 + cos 𝜃)

⇐⇒ 𝑇 =
𝑚1𝑚2𝑔 (sin 𝜃 + cos 𝜃)

𝑚2 + 𝑚1

donde 𝑚1, 𝑚2 son desconocidos y por ende no veo sentido en simplificar con los valores
numéricos de sin 𝜃, cos 𝜃 y 𝑔.

Habiendo expresado 𝑇 en función de los datos del problema, concluimos que −→𝑎1,
−→𝑎2

como fueron definidos antes determinan completamente la aceleración de las masas.

¿Qué pasaría si las masas son idénticas? Las masas perciben la misma fuerza por parte
de la tensión y por ende la diferencia radica en cuánto la gravedad afecte a cada una. Si
las masas son las mismas, es fácil ver que la componente en 𝑗 ′ de la masa 2 es superior
a la componente en 𝑖 de la masa 1 (pues la pendiente de aquélla es más pronunciada que
la de ésta). Por ende, la masa 2 bajaría por la pendiente arrastrando a la masa 1.

(𝑐) Debe cumplirse que la acción de la gravedad en una masa equivalga en magnitud a
la acción de la gravedad en la otra. Es decir, debe cumplirse

𝑚1𝑔 sin 𝜃 = 𝑚2𝑔 cos 𝜃
⇐⇒ 𝑚2 = 𝑚1 tan 𝜃

La tensión de la cuerda quedaría
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𝑇 =
𝑚1𝑚1 tan 𝜃𝑔(sin 𝜃 + cos 𝜃)

𝑚1 tan 𝜃 + 𝑚1

= 𝑔
𝑚2

1 tan 𝜃 (sin 𝜃 + cos 𝜃)
𝑚1(tan 𝜃 + 1)

= 𝑔𝑚1 ·
sin2 𝜃
cos 𝜃 + sin 𝜃
tan 𝜃 + 1

= 𝑔𝑚1
sin 𝜃 (tan 𝜃 + 1)

tan 𝜃 + 1
= 𝑔𝑚1 sin 𝜃

que es una expresión sumamente simple.
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2. En la figura se muestran tres partículas, dos con carga +𝑞 y una con carga +2𝑞.
Las partículas con carga +𝑞 se encuentran separadas de la partícula con carga +2𝑞
por una distancia 𝑎. Calcule:

(a) (10 pts.) El campo eléctrico ®𝐸 (dirección y magnitud) en el punto 𝑃.

(b) (10 pts.) El potencial 𝑉 en el punto 𝑃.

(c) (10 pts.) ¿Qué puede comentar sobre las contribuciones que hacen las partí-
culas con carga +𝑞 al campo eléctrico y al potencial en el punto 𝑃?

(𝑎) Debería ser obvio que los campos generados por las dos cargas unitarias se anulan y
solo influye la carga +2𝑞. Pero vamos a hacer todo bien formal de todos modos. Sea 𝜃 el
ángulo entre la horizontal y la línea que va de +2𝑞 a 𝑃. Sean 𝑟1 = 𝑟2 las distancias desde
la carga superior izquierda e inferior derecha hacia 𝑃, y 𝑟3 la distancia desde +2𝑞 a 𝑃.

−→
𝐸1 = 𝜅

𝑞

𝑟2
1
𝑟1, 𝑟1 = (cos 𝜃,− sin 𝜃)

−→
𝐸2 = 𝜅

𝑞

𝑟2
2
𝑟2, 𝑟2 = (− cos 𝜃, sin 𝜃)

−→
𝐸3 = 𝜅

2𝑞
𝑟2

3
𝑟3, 𝑟3 = (cos 𝜃, sin 𝜃)

Por lo tanto,
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−→
𝐸 =

∑︁
𝑖∈{1,2,3}

−→
𝐸𝑖

= 𝜅𝑞

(
1
𝑟2

1
𝑟1 +

1
𝑟2

2
𝑟2 +

2
𝑟2

3
𝑟3

)
= 𝜅𝑞

(
1
𝑟2

1
(𝑟1 + 𝑟2) +

2
𝑟2

3
𝑟3

)
= 𝜅𝑞

(
2
𝑟2

3
𝑟3

)
= 𝜅

2𝑞
𝑟2

3
𝑟3

tal como predĳimos. La distancia 𝑟3 es la mitad de la diagnoal de un cuadrado. La
diagonal de un cadrado con lados 𝑎 tiene longitud 𝑑 =

√
𝑎2 + 𝑎2 =

√
2𝑎2 = 𝑎

√
2. Por

ende 𝑟3 = 𝑎
√

2
2 . Por lo tanto

−→
𝐸 = 𝜅 · 2𝑞 · 1/

(
𝑎
√

2
2

)2

𝑟3 = 𝜅 · 2𝑞 · 4
𝑎2 · 2

𝑟3

Simplificando,

−→
𝐸 = 𝜅

4𝑞
𝑎2 𝑟3

(𝑏) Ya dĳimos que 𝑟1 = 𝑟2 y es obvio que 𝑟2 = 𝑟3. Por principio de superposición el
voltaje en 𝑃 es la suma del voltaje generado en dicho punto por cada carga:
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𝑉 = 𝑉1 +𝑉2 +𝑉3

= 𝜅
𝑞

𝑟1
+ 𝜅 𝑞

𝑟2
+ 𝜅2𝑞

𝑟3

= 𝜅𝑞

(
1
𝑟
+ 1
𝑟
+ 2
𝑟

) {
𝑟 =

𝑎
√

2
2

}
=

4𝜅𝑞
𝑟

= 4𝜅𝑞 · 2
𝑎
√

2

=
8𝜅𝑞
𝑎
√

2

(𝑐) No contribuyen nada al campo eléctrico. Al voltaje sí contribuyen, y contribuyen
exactamente la mitad de lo que contribuye la carga +2𝑞, por estar a la misma distancia
que ésta del punto 𝑃 y tener la mitad de la carga. En total, ambas cargas +𝑞 sumadas
contribuyen lo mismo que la carga +2𝑞 al voltaje. Etc, yo qué sé!
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(3) Termodinámica, salteado.
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4. (20 pts.) Una partícula de masa𝑚 y carga 𝑞 ingresa con una velocidad ®𝑣 a un solenoide
de longitud 𝑙 y que genera un campo ®𝐵 a lo largo de su eje de simetría axial. Al ingresar
al solenoide, el vector velocidad es paralelo al eje de simetría axial. Si 𝑚 = 10−31 kg,
𝑞 = 10−19 C, 𝑣 = 106 m/s, 𝑙 = 10 cm y 𝐵 = 0,1 T, calcule el ángulo de desviación en la
trayectoria de la partícula al emerger del solenoide.

Pura trampa este ejercicio, los valores numéricos son superfluos. El campo −→
𝐵 del

soneloide es paralelo a su eje de simetría axial, digamos −→𝐵 = 𝐵𝑖 en nuestro sistema de
coordenadas (soneloide va de izquierda a derecha). La partícula entra a dicho soneloide
en dirección paralela al eje de simetría. El ángulo entre −→

𝐵 y −→𝑣 es por ende nulo. Por lo
tanto,

−→
𝐹 = 𝑞(−→𝑣 × −→

𝐵 ) = 0

La partícula sale del soneloide en dirección paralela al eje de simetría sin sufrir desvia-
miento alguno. Es decir, el ángulo de desviación es cero.
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12. Final 2021-12-07
1. Una masa 𝑀1 en un plano inclinado con rozamiento está unida a otra masa 𝑀2
colgante mediante una cuerda ideal y una polea sin masa como se muestra en la figura
a continuación. Teniendo en cuenta que 𝑀1 = 𝑀2 = 1000 gr, que el ángulo del plano
inclinado es de 30◦ y que el coeficiente de rozamiento dinámico 𝜇𝑑 = 0,2 mientras que
el coeficiente de rozamiento estático 𝜇𝑒 = 0,4, determinar:

(a) Bajo la configuración del problema, ¿el sistema está en movimiento? Justifique su
respuesta

(b) La aceleración del sistema.

(c) La tensión de la cuerda.

(d) Si el sistema está en movimiento, determine el ángulo para el cual las masas
quedan en equilibrio.

Solución. (𝑎) Definimos

𝑖′ = (cos 𝜃, sin 𝜃), 𝑗 ′ = (− sin 𝜃, cos 𝜃)

el sistema de coordenadas paralelo y perpendicular a la pendiente inclinada sobre la cual
se apoya 𝑚1. La aceleración a lo largo de la pendiente de 𝑚1 es

𝑎1𝑥𝑚 = −𝑚𝑔 sin 𝜃 + 𝑇 − 𝑅

y la de 𝑚2 en sentido vertical es

𝑎2𝑦𝑚 = −𝑚𝑔 + 𝑇
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Asumamos que el sistema está en equilibrio y por ende no hay fuerza de rozamiento.
¿Cuánta fuerza experimenta 𝑚1 por obra de la tensión y la gravedad? Si hay equilibrio,
𝑇 = 𝑚𝑔 (la masa 2 está suspendida). Y como la masa uno experimenta la fuerza de la
tensión en una dirección y la de la gravedad en la otra, la magnintud de fuerza neta que
experimenta es

𝐹∥ =
��𝑇 − 𝐺 ∥

��
= |𝑚𝑔 − 𝑚𝑔 sin 𝜃 |
= 𝑚𝑔 [1 − sin 𝜃]
= 4,9𝑁

Pero 𝜇𝑑 · 𝑁 = 𝜇𝑑 (0,4 × cos 𝜃 × 9,8) = 3,395N. Como 4,9N > 3,395N, hay movimiento.

(𝑏) Sabemos que hay movimiento. Sabemos que 𝑎1𝑥 = −𝑎2𝑦. Por lo tanto,

− 𝑚𝑔 sin 𝜃 + 𝑇 − 𝜇𝑑 (𝑚𝑔 cos 𝜃) = 𝑚𝑔 − 𝑇
⇐⇒ 2𝑇 = 𝑚𝑔 + 𝑚𝑔 sin 𝜃 + 𝜇𝑑 (𝑚𝑔 cos 𝜃)

⇐⇒ 𝑇 =
𝑚𝑔 [1 + sin 𝜃 + 𝜇𝑑 cos 𝜃]

2
⇐⇒ 𝑇 ≈ 8,199N

Ahora que sabemos 𝑇 , usamos

𝑎1𝑥𝑚 = −𝑚𝑔 sin 𝜃 + 𝑇 − 𝑅, 𝑎2𝑦𝑚 = −𝑚𝑔 + 𝑇, 𝑎1𝑥 = −𝑎2𝑦

Por ejemplo, reemplazando por el valor de 𝑇 en 𝑎2𝑦, obtenemos

𝑎2𝑦 =
−9,8N + 8,199N

1kg
= −1,601m/s2

(𝑐) Ya lo hicimos.

(𝑑) El sistema está en equilibrio si la fuerza neta experimentada por 𝑚1 hacia arriba y
hacia abajo de la pendiente se equilibran en magnitud. Es decir, si

𝑚𝑔 sin 𝜃 + 𝜇𝑒 (𝑚𝑔 cos 𝜃) = 𝑇
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Ya dĳimos que si el sistema está en equilibrio, 𝑇 = 𝑚𝑔, pues la masa 2 está suspendida.
Por ende,

𝑚𝑔 sin 𝜃 + 𝜇𝑑 (𝑚𝑔 cos 𝜃) = 𝑚𝑔

Esto se reduce a

sin 𝜃 + 0,4 cos 𝜃 = 1
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2. Considere el circuito que se muestra en la figura. Las características de los elementos
del circuito son: 𝑅1 = 𝑅2 = 20Ω, 𝐶1 = 𝐶2 = 8𝜇𝐹. La situación de la figura es
estacionaria, es decir que no hay variación de corrientes con el tiempo. En un momento
se cierra la llave y se deja evolucionar el sistema. Hallar:

𝐶1

10V

𝑅1

𝐶2

8V

𝑅2

(a) Las corrientes y caídas de tensión sobre cada uno de los elementos antes de cerrar
la llave.

(b) Las cargas sobre los capacitores antes de cerrar la llave.

(c) Las corrientes en el instante en que se cierra la llave.

(d) Las corrientes luego de un tiempo muy posterior al cierre de la llave.

(e) La carga sobre cada capacitor luego de un tiempo muy posterior al cierre de la
llave.

Solución. (𝑎) Primero voy a nombrar los nodos relevantes como se muestra en la figura
de abajo:

𝐶1

10V

𝑅1

𝐶2

8V

𝑅2

𝑎 𝑏 𝑐

𝑑 𝑒 𝑓
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Defino el cable inferior derecho (nodo 𝑒) como el punto en que el voltaje es cero por
convención (tierra). Como la situación es estacionaria, los capacitores están completa-
mente cargados y no dejan pasar corriente. Como no hay corriente, las resistencias no
generan voltaje alguno (trivial por Ley de Ohm) y por lo tanto el voltaje en 𝑓 también es
cero. Es obvio entonces que 𝑉𝑐 = 8𝑉,𝑉𝑑 = 10𝑉 . La forma más fácil de sacar el voltaje
de los capacitores es observar que en el camino 𝑑 → 𝑐 el voltaje pasa de 10V a 8V, es
decir hay una diferencia de potencial de 2V. Como el camino consiste en dos capacitores
en serie, sus voltajes se reparten equitativamente. Por lo tanto, 𝐶1 resta 1V y 𝐶2 resta
1V. Así obtenemos no solo que 𝑉𝑎 = 9𝑉 sino que 𝑉𝐶1 = 𝑉𝐶2 = 1𝑉 .

(𝑏) Los capacitores están plenamente cargados. Usando 𝑉 = 𝑄/𝐶 ⇒ 𝑄 = 𝑉𝐶, la carga
en cada uno satisface

𝑄 = 1V · 8𝜇F = 8𝜇C

(𝑐) Se cierra la llave y en ese instante la corriente adquiere un nuevo camino 𝑏 → 𝑒. En
el instante en que se cierra la llave, el voltaje en cada capacitor es 1V y 𝑉𝑏 = 𝑉𝑎 = 9𝑉 .
La corriente 𝐼 que intentaba fluir en el loop 𝑑 → 𝑎 → 𝑐 → 𝑓 → 𝑑 derepente se “parte”
en el nodo 𝑏, con 𝐼2 siguiendo hacia 𝑐 e 𝐼3 bajando hacia el nodo 𝑒.

La corriente 𝐼3 que recorre 𝑏 → 𝑒 pasa por 𝑅1 y cruza desde un voltaje de 9V (nodo 𝑏)
a un voltaje de 0V (nodo 𝑒). Consecuentemente, el voltaje del resistor es 9𝑉 . Por ley de
Ohm, 𝐼 = 𝑉

𝑅
. Por lo tanto, la corriente 𝐼3 es

𝐼3 =
𝑉𝑅1

𝑅1
=

9V
20Ω

= 0,45A

La corriente 𝐼2 pasa por 𝑅2, que tiene voltaje cero, y por ende es cero. Por lo tanto,
𝐼 = 𝐼2 = 0,45A. Esto tiene sentido físico: justo en el instante en que se cierra la llave,
los capacitores siguen “tapados”: toda la corriente debe ser la que se desvía a través dsel
resistor 𝑅1.

(𝑑) La corriente será nula. Sí, la carga podrá redistribuirse por un tiempo a través del
nuevo camino, pero eventualmente los capacitores volverán a “taparse” y la corriente
volverá a ser cero.

(𝑒) Para determinar la carga hay que encontrar el voltaje. El punto es que, si bien la
corriente vuelve a ser nula eventualmente, los voltajes han cambiado. En particular,
como la corriente es nula, la resistencia 𝑅1 tiene un voltaje de cero (por Ley de Ohm).
Es decir que el nodo 𝑏 ahora tiene un voltaje de 0V (conectado a tierra). Esto significa
que el nodo 𝑎 debe tener un voltaje de 0V también. Por ende el voltaje de 𝐶1 es 10V. El
voltaje de 𝑐 sigue siendo 8V y por ende el de 𝐶2 es 8V. Las cargas entonces son:
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𝑄𝐶1 = 𝑉𝐶1𝐶1 = 10𝑉 · 8𝜇F = 80𝜇C
𝑄𝐶2 = 𝑉𝐶2 · 𝐶2 = 8V · 8𝜇F = 64𝜇C
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(3) Termodinámica. Salteado.
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13. Final 2009-2-27
(1) Un proyectil que tiene una masa de 50 g se incrusta en un bloque de madera de
2 kg. El bloque descansa sobre un plano inclinado de 15◦ y cuando el proyectil impacta
en el bloque, este asciende 1 m sobre el plano antes de detenerse. Si el coeficiente de
rozamiento entre el plano y el bloque es 0,3, determinar la velocidad inicial del proyectil.

Solución. Datos:

𝑚𝑝 = 0,05kg

𝑚𝑏 = 2kg

𝜇𝑑 = 0,3

𝑁 = 𝑚𝑔 cos 𝜃

(𝑎) Nos dicen que el proyectil “se incrusta” en el bloque. ∴ El choque es perfectamente
plástico. ∴ Hay pérdida máxima de energía cinética y la velocidad del bloque en el
momento de contacto equivale a la velocidad final del proyectil.

(𝑏) La energía en el primer instante en que el bloque empieza a moverse es potencial
(por la gravedad) y cinética (por el movimiento). La masa total, por la incrustación, es
𝑚 = 𝑚𝑝 + 𝑚𝑏.

𝐸1 = 𝑚𝑔ℎ + 1
2
𝑚𝑣2

1

La energía cuando el bloque se detiene después de un metro es estrictamente potencial.

𝐸2 = 𝑚𝑔(ℎ + sin 𝜃 m)

con sin 𝜃m la altura equivalente a un metro de recorrido por la pendiente de 𝜃 = 15◦.

(𝑐) El rozamiento es una fuerza no-conservativa y realiza trabajo. ∴ Hay pérdida de
energía. La diferencia en la energía total es el trabajo realizado por el rozamiento. Es
decir,

𝐸2 − 𝐸1 = 𝑊𝑅 = 𝜇𝑑 · 𝑁 1m = −𝜇𝑑 · 𝑚𝑔 cos 𝜃 J

(𝑑) Sustituyendo 𝐸2, 𝐸1 en la ecuación anterior, y obviando unidades:
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𝑚𝑔 (ℎ + sin 𝜃) −
(
𝑚𝑔ℎ + 1

2
𝑚𝑣2

1

)
= −𝜇𝑑 · 𝑚𝑔 cos 𝜃

⇐⇒ 𝑚𝑔ℎ + 𝑚𝑔 sin 𝜃 − 𝑚𝑔ℎ − 1
2
𝑚𝑣2

1 = −𝜇𝑑 · 𝑚𝑔 cos 𝜃

Notar que cada término está en Jules y por lo tanto al divdir por 𝑚 (kilogramos) nos
queda cada término en m2/s2:

1
2
𝑣2

1 = 𝑔ℎ + 𝑔 sin 𝜃 − 𝑔ℎ + 𝜇𝑑 · 𝑔 cos 𝜃

⇐⇒ 1
2
𝑣2

1 = 𝑔 sin 𝜃 + 𝜇𝑑 · 𝑔 cos 𝜃

⇐⇒ 𝑣1 =
√︁

2𝑔 (sin 𝜃 + 𝜇𝑑 cos ℎ)

Hemos determinado la velocidad del bloque (con la masa incrustada) tras el impacto.

(𝑒) El choque perfectamente inelástico (o plástico) satisface la siguiente propiedad:

𝑚𝐴𝑣𝐴𝑖 + 𝑚𝐵𝑣𝐵𝑖 = (𝑚𝐴 + 𝑚𝐵)𝑣 𝑓

donde 𝑣 𝑓 es la velocidad adquirida por las masas 𝐴, 𝐵 incrustadas. En nuestro caso, si
hacemos 𝐸0 el momento inicial,

𝑚𝑝𝑣0𝑝 + 𝑚𝐵𝑣0𝑏 = 𝑚𝑣1

Pero la velocidad inicial del bloque es nula (se nos dice que “descansa”). Por lo tanto,
obtenemos

𝑚𝑝𝑣0𝑝 = 𝑚𝑣1

⇐⇒ 𝑣0𝑝 =
𝑚𝑝 + 𝑚𝑏

𝑚𝑝

𝑣1

⇐⇒ 𝑣0𝑝 =
2,05kg
0,05kg

√︁
2 · 9,8 (sin(15◦) + 0,3 cos(15◦)) m/s

⇐⇒ 𝑣0𝑝 ≈ 41 · 3,279 m/s
⇐⇒ 𝑣0𝑝 ≈ 134,439 m/s
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2 - Un cuerpo de 60 kg está en reposo sobre un plano inclinado 60◦ y está unido mediante
una polea y cuerda sin masa a otro cuerpo de 70 kg que está en un plano inclinado 30◦.
Si el coeficiente de rozamiento en ambos planos es 0,1, determinar la aceleración del
sistema y la tensión en la cuerda.

60◦ 30◦

60
kg

60
kg

70 kg

+

Solución. Sea 𝑚1 la masa de 60kg, 𝑚2 la de 70kg, 𝛼 = 60◦, 𝜃 = 30◦. La fuerza que
mueve a 𝑚1 hacia abajo de su pendiente es (en magnitud) 𝑚1𝑔 sin𝛼 ≈ 509,222. La que
mueve a 𝑚2 hacia abajo de su pendiente es (en magnitud) 𝑚2𝑔 sin 𝜃 ≈ 343. “Gana la
pulseada” 𝑚1: el sistema se mueve hacia la izquierda: la masa 1 baja y la masa 2 sube.
Por lo tanto:

Si tomamos las dos masas como un único sistema, la fuerza neta que actúa sobre el
mismo en dirección del movimiento satisface

𝑎 (𝑚1 + 𝑚2) =

G sobre 𝑚1︷     ︸︸     ︷
𝑚1𝑔 sin𝛼 +

T en 𝑚2 y 𝑚1︷︸︸︷
𝑇 − 𝑇 −𝑅1 − 𝑅2 −

G sobre 𝑚2︷      ︸︸      ︷
𝑚2𝑔 cos𝛼

𝑎 =
𝑔

𝑚1 + 𝑚2
[𝑚1 (sin𝛼 − 𝜇𝑑 cos𝛼) − 𝑚2 (cos𝛼 + 𝜇𝑑 sin𝛼)]

⇐⇒ 𝑎 ≈ 0,595 m/s2

La tensión sale fácil por segunda ley de Newton en la primera masa:

0,595𝑚1 = 𝑚1𝑔 sin𝛼 − 𝑇 − 𝑅1

⇐⇒ 𝑇 = 𝑚1𝑔 sin𝛼 − 𝜇𝑑 · 𝑚1𝑔 cos𝛼 − 0,595𝑚1

⇐⇒ 𝑇 ≈ 444,123
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3) Considere el sistema de capacitores mostrado en la figura.
La diferencia de potencial entre los puntos a y b es 1200V.

𝑎

𝐶1=2𝜇F

𝑐

𝐶3=5𝜇F

𝐶2=4𝜇F

𝑏

i) Calcule la carga en cada capacitor

ii) Calcule la diferencia de potencial entre los puntos a y c.

iii) En la figura de abajo, sean 𝐸1 y 𝐸2 de 2.0 volts y 4.0 volts respectivamente y sean
las resistencias 𝑟1, 𝑟2 y 𝑅 de 1,0 ohm, 2,0 ohms y 5,0 ohms respectivamente. ¿Cuál
es la corriente que circula por este circuito? Grafique la diferencia de potencial a
lo largo de todo el circuito

(𝑖) El sistema se modela como dos capacitores en serie, el primero 𝐶1 y el segundo
𝐶23 en paralelo. Los capacitores en serie tienen idéntica carga. Por ende 𝑄1 = 𝑄23. La
capacitancia total es𝑉𝑡 ×𝐶𝑒𝑞 = 1963,6𝜇C (es simple calcular la capacitancia total como
18/11𝜇F).

Toda la carga tiene que pasar por 𝐶1. Luego 𝑄1 = 1963,6𝜇C. Toda la carga tiene
que pasar por 𝐶23, pero se distribiuye en los capacitores. El voltaje en el punto 𝑐 es
𝑉𝑐 = 𝑄1/𝐶1 = 981,8V.

164



14. Un ejercicio de final
Considere un circuito cerrado formado por una fuente de fuerza electromotriz (fem)
constante E𝑠, una resistencia 𝑅 y una espira circular conductora, conectados en serie.

La espira se encuentra inmersa en una región donde existe un campo magnético B
uniforme espacialmente, cuya dirección es perpendicular al plano de la espira y con
sentido entrante (hacia el plano de la página). La magnitud del campo magnético varía
con el tiempo según la siguiente función definida a trozos, donde 𝑡 se mide en segundos:

𝐵(𝑡) =


0 0 ≤ 𝑡 < 10
𝛼𝑡 10 ≤ 𝑡 < 20
0 20 ≤ 𝑡 ≤ 30

donde 𝛼 es una constante positiva.

Se conocen los siguientes parámetros del sistema:

Fem de la fuente: E𝑠 = 6 𝜇V.

Corriente eléctrica medida en el circuito en ausencia de campo magnético (𝑡 <
10 s): 𝐼0 = 1,5 mA.

Corriente eléctrica medida durante la variación del campo (10 ≤ 𝑡 < 20 s):
𝐼𝐵 = 0,5 mA.

El ejercicio pide:

1. Determine el valor de la resistencia 𝑅 del circuito.

2. Calcule la magnitud y determine el sentido de la fem inducida (Eind) en la espira
durante el intervalo 10 ≤ 𝑡 < 20 s. Justifique el sentido de la corriente inducida.

3. Halle el valor de la constante 𝛼 del campo magnético.

4. Obtenga la expresión de la corriente total 𝐼 (𝑡) para todo el intervalo 0 ≤ 𝑡 ≤ 30 s.

Solución. (1) La resistencia se obtiene de la ley de Ohm en el intervalo 0 ≤ 𝑡 < 10 s,
donde no hay campo magnético y por lo tanto no hay fem inducida. Por lo tanto, la única
fem en el circuito es la de la fuente. Por lo tanto,
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𝑅 =
E𝑠
𝐼0

=
6𝜇V

1,5mA

=
6

1,5
· (10−6/10−3)Ω

= 4 · 10−3Ω

= 4mΩ

(𝑎) La FEM inducida en la espira se obtiene de la ley de Kirchhoff de las mallas. En el
intervalo 10 ≤ 𝑡 < 20 s, la ley de Kirchhoff dice que la suma de las fem en el circuito
es igual a la caída de tensión en la resistencia. El campo magnético asciende y por lo
tanto la fem inducida se opone a ese aumento (Lenz). Por lo tanto, la fem inducida tiene
sentido opuesto a la de la fuente. Por lo tanto,

Etotal = E𝑠 − Eind = 𝐼𝑅

Cuando el campo magnético existe, 𝐼 es conocida y 𝑅 no cambia. Por lo tanto,

E𝑠 − Eind = 𝐼𝐵𝑅

⇐⇒ Eind = E𝑠 − 𝐼𝐵𝑅
⇐⇒ Eind = 6𝜇V − 0,5mA · 4mΩ

⇐⇒ Eind = 6𝜇V − 2𝜇V
⇐⇒ Eind = 4𝜇V

(Notar que esto nos dice que el voltaje total es 2, lo cual vale si usamos la Ley de Ohm
con 𝐼𝐵 y 𝑅).

Ahora bien, para 10 ≤ 𝑡 ≤ 20,

Φ𝐵 (𝑡) =
∮

B(𝑡) · 𝑑A = 𝐵(𝑡)𝜋𝑟2 = 𝑎𝑡𝜋𝑟2

Por ende,

Eind = −𝑎𝜋𝑟2

166



Por lo tanto, podemos obtener 𝑎 como

4𝜇V = 𝑎𝜋𝑟2

⇐⇒ 𝑎 =
4𝜇V
𝜋𝑟2
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